Ruby 3.1.3p185 (2022-11-24 revision 1a6b16756e0ba6b95ab71a441357ed5484e33498)
cont.c
1/**********************************************************************
2
3 cont.c -
4
5 $Author$
6 created at: Thu May 23 09:03:43 2007
7
8 Copyright (C) 2007 Koichi Sasada
9
10**********************************************************************/
11
12#include "ruby/internal/config.h"
13
14#ifndef _WIN32
15#include <unistd.h>
16#include <sys/mman.h>
17#endif
18
19// On Solaris, madvise() is NOT declared for SUS (XPG4v2) or later,
20// but MADV_* macros are defined when __EXTENSIONS__ is defined.
21#ifdef NEED_MADVICE_PROTOTYPE_USING_CADDR_T
22#include <sys/types.h>
23extern int madvise(caddr_t, size_t, int);
24#endif
25
26#include COROUTINE_H
27
28#include "eval_intern.h"
29#include "gc.h"
30#include "internal.h"
31#include "internal/cont.h"
32#include "internal/proc.h"
33#include "internal/warnings.h"
35#include "mjit.h"
36#include "vm_core.h"
37#include "id_table.h"
38#include "ractor_core.h"
39
40static const int DEBUG = 0;
41
42#define RB_PAGE_SIZE (pagesize)
43#define RB_PAGE_MASK (~(RB_PAGE_SIZE - 1))
44static long pagesize;
45
46static const rb_data_type_t cont_data_type, fiber_data_type;
47static VALUE rb_cContinuation;
48static VALUE rb_cFiber;
49static VALUE rb_eFiberError;
50#ifdef RB_EXPERIMENTAL_FIBER_POOL
51static VALUE rb_cFiberPool;
52#endif
53
54#define CAPTURE_JUST_VALID_VM_STACK 1
55
56// Defined in `coroutine/$arch/Context.h`:
57#ifdef COROUTINE_LIMITED_ADDRESS_SPACE
58#define FIBER_POOL_ALLOCATION_FREE
59#define FIBER_POOL_INITIAL_SIZE 8
60#define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 32
61#else
62#define FIBER_POOL_INITIAL_SIZE 32
63#define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 1024
64#endif
65
66enum context_type {
67 CONTINUATION_CONTEXT = 0,
68 FIBER_CONTEXT = 1
69};
70
72 VALUE *ptr;
73#ifdef CAPTURE_JUST_VALID_VM_STACK
74 size_t slen; /* length of stack (head of ec->vm_stack) */
75 size_t clen; /* length of control frames (tail of ec->vm_stack) */
76#endif
77};
78
79struct fiber_pool;
80
81// Represents a single stack.
83 // A pointer to the memory allocation (lowest address) for the stack.
84 void * base;
85
86 // The current stack pointer, taking into account the direction of the stack.
87 void * current;
88
89 // The size of the stack excluding any guard pages.
90 size_t size;
91
92 // The available stack capacity w.r.t. the current stack offset.
93 size_t available;
94
95 // The pool this stack should be allocated from.
96 struct fiber_pool * pool;
97
98 // If the stack is allocated, the allocation it came from.
99 struct fiber_pool_allocation * allocation;
100};
101
102// A linked list of vacant (unused) stacks.
103// This structure is stored in the first page of a stack if it is not in use.
104// @sa fiber_pool_vacancy_pointer
106 // Details about the vacant stack:
107 struct fiber_pool_stack stack;
108
109 // The vacancy linked list.
110#ifdef FIBER_POOL_ALLOCATION_FREE
111 struct fiber_pool_vacancy * previous;
112#endif
113 struct fiber_pool_vacancy * next;
114};
115
116// Manages singly linked list of mapped regions of memory which contains 1 more more stack:
117//
118// base = +-------------------------------+-----------------------+ +
119// |VM Stack |VM Stack | | |
120// | | | | |
121// | | | | |
122// +-------------------------------+ | |
123// |Machine Stack |Machine Stack | | |
124// | | | | |
125// | | | | |
126// | | | . . . . | | size
127// | | | | |
128// | | | | |
129// | | | | |
130// | | | | |
131// | | | | |
132// +-------------------------------+ | |
133// |Guard Page |Guard Page | | |
134// +-------------------------------+-----------------------+ v
135//
136// +------------------------------------------------------->
137//
138// count
139//
141 // A pointer to the memory mapped region.
142 void * base;
143
144 // The size of the individual stacks.
145 size_t size;
146
147 // The stride of individual stacks (including any guard pages or other accounting details).
148 size_t stride;
149
150 // The number of stacks that were allocated.
151 size_t count;
152
153#ifdef FIBER_POOL_ALLOCATION_FREE
154 // The number of stacks used in this allocation.
155 size_t used;
156#endif
157
158 struct fiber_pool * pool;
159
160 // The allocation linked list.
161#ifdef FIBER_POOL_ALLOCATION_FREE
162 struct fiber_pool_allocation * previous;
163#endif
164 struct fiber_pool_allocation * next;
165};
166
167// A fiber pool manages vacant stacks to reduce the overhead of creating fibers.
169 // A singly-linked list of allocations which contain 1 or more stacks each.
170 struct fiber_pool_allocation * allocations;
171
172 // Provides O(1) stack "allocation":
173 struct fiber_pool_vacancy * vacancies;
174
175 // The size of the stack allocations (excluding any guard page).
176 size_t size;
177
178 // The total number of stacks that have been allocated in this pool.
179 size_t count;
180
181 // The initial number of stacks to allocate.
182 size_t initial_count;
183
184 // Whether to madvise(free) the stack or not:
185 int free_stacks;
186
187 // The number of stacks that have been used in this pool.
188 size_t used;
189
190 // The amount to allocate for the vm_stack:
191 size_t vm_stack_size;
192};
193
194typedef struct rb_context_struct {
195 enum context_type type;
196 int argc;
197 int kw_splat;
198 VALUE self;
199 VALUE value;
200
201 struct cont_saved_vm_stack saved_vm_stack;
202
203 struct {
204 VALUE *stack;
205 VALUE *stack_src;
206 size_t stack_size;
207 } machine;
208 rb_execution_context_t saved_ec;
209 rb_jmpbuf_t jmpbuf;
210 rb_ensure_entry_t *ensure_array;
211 /* Pointer to MJIT info about the continuation. */
212 struct mjit_cont *mjit_cont;
214
215
216/*
217 * Fiber status:
218 * [Fiber.new] ------> FIBER_CREATED
219 * | [Fiber#resume]
220 * v
221 * +--> FIBER_RESUMED ----+
222 * [Fiber#resume] | | [Fiber.yield] |
223 * | v |
224 * +-- FIBER_SUSPENDED | [Terminate]
225 * |
226 * FIBER_TERMINATED <-+
227 */
228enum fiber_status {
229 FIBER_CREATED,
230 FIBER_RESUMED,
231 FIBER_SUSPENDED,
232 FIBER_TERMINATED
233};
234
235#define FIBER_CREATED_P(fiber) ((fiber)->status == FIBER_CREATED)
236#define FIBER_RESUMED_P(fiber) ((fiber)->status == FIBER_RESUMED)
237#define FIBER_SUSPENDED_P(fiber) ((fiber)->status == FIBER_SUSPENDED)
238#define FIBER_TERMINATED_P(fiber) ((fiber)->status == FIBER_TERMINATED)
239#define FIBER_RUNNABLE_P(fiber) (FIBER_CREATED_P(fiber) || FIBER_SUSPENDED_P(fiber))
240
242 rb_context_t cont;
243 VALUE first_proc;
244 struct rb_fiber_struct *prev;
245 struct rb_fiber_struct *resuming_fiber;
246
247 BITFIELD(enum fiber_status, status, 2);
248 /* Whether the fiber is allowed to implicitly yield. */
249 unsigned int yielding : 1;
250 unsigned int blocking : 1;
251
252 struct coroutine_context context;
253 struct fiber_pool_stack stack;
254};
255
256static struct fiber_pool shared_fiber_pool = {NULL, NULL, 0, 0, 0, 0};
257
258static ID fiber_initialize_keywords[2] = {0};
259
260/*
261 * FreeBSD require a first (i.e. addr) argument of mmap(2) is not NULL
262 * if MAP_STACK is passed.
263 * http://www.FreeBSD.org/cgi/query-pr.cgi?pr=158755
264 */
265#if defined(MAP_STACK) && !defined(__FreeBSD__) && !defined(__FreeBSD_kernel__)
266#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON | MAP_STACK)
267#else
268#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON)
269#endif
270
271#define ERRNOMSG strerror(errno)
272
273// Locates the stack vacancy details for the given stack.
274// Requires that fiber_pool_vacancy fits within one page.
275inline static struct fiber_pool_vacancy *
276fiber_pool_vacancy_pointer(void * base, size_t size)
277{
278 STACK_GROW_DIR_DETECTION;
279
280 return (struct fiber_pool_vacancy *)(
281 (char*)base + STACK_DIR_UPPER(0, size - RB_PAGE_SIZE)
282 );
283}
284
285// Reset the current stack pointer and available size of the given stack.
286inline static void
287fiber_pool_stack_reset(struct fiber_pool_stack * stack)
288{
289 STACK_GROW_DIR_DETECTION;
290
291 stack->current = (char*)stack->base + STACK_DIR_UPPER(0, stack->size);
292 stack->available = stack->size;
293}
294
295// A pointer to the base of the current unused portion of the stack.
296inline static void *
297fiber_pool_stack_base(struct fiber_pool_stack * stack)
298{
299 STACK_GROW_DIR_DETECTION;
300
301 VM_ASSERT(stack->current);
302
303 return STACK_DIR_UPPER(stack->current, (char*)stack->current - stack->available);
304}
305
306// Allocate some memory from the stack. Used to allocate vm_stack inline with machine stack.
307// @sa fiber_initialize_coroutine
308inline static void *
309fiber_pool_stack_alloca(struct fiber_pool_stack * stack, size_t offset)
310{
311 STACK_GROW_DIR_DETECTION;
312
313 if (DEBUG) fprintf(stderr, "fiber_pool_stack_alloca(%p): %"PRIuSIZE"/%"PRIuSIZE"\n", (void*)stack, offset, stack->available);
314 VM_ASSERT(stack->available >= offset);
315
316 // The pointer to the memory being allocated:
317 void * pointer = STACK_DIR_UPPER(stack->current, (char*)stack->current - offset);
318
319 // Move the stack pointer:
320 stack->current = STACK_DIR_UPPER((char*)stack->current + offset, (char*)stack->current - offset);
321 stack->available -= offset;
322
323 return pointer;
324}
325
326// Reset the current stack pointer and available size of the given stack.
327inline static void
328fiber_pool_vacancy_reset(struct fiber_pool_vacancy * vacancy)
329{
330 fiber_pool_stack_reset(&vacancy->stack);
331
332 // Consume one page of the stack because it's used for the vacancy list:
333 fiber_pool_stack_alloca(&vacancy->stack, RB_PAGE_SIZE);
334}
335
336inline static struct fiber_pool_vacancy *
337fiber_pool_vacancy_push(struct fiber_pool_vacancy * vacancy, struct fiber_pool_vacancy * head)
338{
339 vacancy->next = head;
340
341#ifdef FIBER_POOL_ALLOCATION_FREE
342 if (head) {
343 head->previous = vacancy;
344 vacancy->previous = NULL;
345 }
346#endif
347
348 return vacancy;
349}
350
351#ifdef FIBER_POOL_ALLOCATION_FREE
352static void
353fiber_pool_vacancy_remove(struct fiber_pool_vacancy * vacancy)
354{
355 if (vacancy->next) {
356 vacancy->next->previous = vacancy->previous;
357 }
358
359 if (vacancy->previous) {
360 vacancy->previous->next = vacancy->next;
361 }
362 else {
363 // It's the head of the list:
364 vacancy->stack.pool->vacancies = vacancy->next;
365 }
366}
367
368inline static struct fiber_pool_vacancy *
369fiber_pool_vacancy_pop(struct fiber_pool * pool)
370{
371 struct fiber_pool_vacancy * vacancy = pool->vacancies;
372
373 if (vacancy) {
374 fiber_pool_vacancy_remove(vacancy);
375 }
376
377 return vacancy;
378}
379#else
380inline static struct fiber_pool_vacancy *
381fiber_pool_vacancy_pop(struct fiber_pool * pool)
382{
383 struct fiber_pool_vacancy * vacancy = pool->vacancies;
384
385 if (vacancy) {
386 pool->vacancies = vacancy->next;
387 }
388
389 return vacancy;
390}
391#endif
392
393// Initialize the vacant stack. The [base, size] allocation should not include the guard page.
394// @param base The pointer to the lowest address of the allocated memory.
395// @param size The size of the allocated memory.
396inline static struct fiber_pool_vacancy *
397fiber_pool_vacancy_initialize(struct fiber_pool * fiber_pool, struct fiber_pool_vacancy * vacancies, void * base, size_t size)
398{
399 struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, size);
400
401 vacancy->stack.base = base;
402 vacancy->stack.size = size;
403
404 fiber_pool_vacancy_reset(vacancy);
405
406 vacancy->stack.pool = fiber_pool;
407
408 return fiber_pool_vacancy_push(vacancy, vacancies);
409}
410
411// Allocate a maximum of count stacks, size given by stride.
412// @param count the number of stacks to allocate / were allocated.
413// @param stride the size of the individual stacks.
414// @return [void *] the allocated memory or NULL if allocation failed.
415inline static void *
416fiber_pool_allocate_memory(size_t * count, size_t stride)
417{
418 // We use a divide-by-2 strategy to try and allocate memory. We are trying
419 // to allocate `count` stacks. In normal situation, this won't fail. But
420 // if we ran out of address space, or we are allocating more memory than
421 // the system would allow (e.g. overcommit * physical memory + swap), we
422 // divide count by two and try again. This condition should only be
423 // encountered in edge cases, but we handle it here gracefully.
424 while (*count > 1) {
425#if defined(_WIN32)
426 void * base = VirtualAlloc(0, (*count)*stride, MEM_COMMIT, PAGE_READWRITE);
427
428 if (!base) {
429 *count = (*count) >> 1;
430 }
431 else {
432 return base;
433 }
434#else
435 errno = 0;
436 void * base = mmap(NULL, (*count)*stride, PROT_READ | PROT_WRITE, FIBER_STACK_FLAGS, -1, 0);
437
438 if (base == MAP_FAILED) {
439 // If the allocation fails, count = count / 2, and try again.
440 *count = (*count) >> 1;
441 }
442 else {
443#if defined(MADV_FREE_REUSE)
444 // On Mac MADV_FREE_REUSE is necessary for the task_info api
445 // to keep the accounting accurate as possible when a page is marked as reusable
446 // it can possibly not occurring at first call thus re-iterating if necessary.
447 while (madvise(base, (*count)*stride, MADV_FREE_REUSE) == -1 && errno == EAGAIN);
448#endif
449 return base;
450 }
451#endif
452 }
453
454 return NULL;
455}
456
457// Given an existing fiber pool, expand it by the specified number of stacks.
458// @param count the maximum number of stacks to allocate.
459// @return the allocated fiber pool.
460// @sa fiber_pool_allocation_free
461static struct fiber_pool_allocation *
462fiber_pool_expand(struct fiber_pool * fiber_pool, size_t count)
463{
464 STACK_GROW_DIR_DETECTION;
465
466 size_t size = fiber_pool->size;
467 size_t stride = size + RB_PAGE_SIZE;
468
469 // Allocate the memory required for the stacks:
470 void * base = fiber_pool_allocate_memory(&count, stride);
471
472 if (base == NULL) {
473 rb_raise(rb_eFiberError, "can't alloc machine stack to fiber (%"PRIuSIZE" x %"PRIuSIZE" bytes): %s", count, size, ERRNOMSG);
474 }
475
476 struct fiber_pool_vacancy * vacancies = fiber_pool->vacancies;
477 struct fiber_pool_allocation * allocation = RB_ALLOC(struct fiber_pool_allocation);
478
479 // Initialize fiber pool allocation:
480 allocation->base = base;
481 allocation->size = size;
482 allocation->stride = stride;
483 allocation->count = count;
484#ifdef FIBER_POOL_ALLOCATION_FREE
485 allocation->used = 0;
486#endif
487 allocation->pool = fiber_pool;
488
489 if (DEBUG) {
490 fprintf(stderr, "fiber_pool_expand(%"PRIuSIZE"): %p, %"PRIuSIZE"/%"PRIuSIZE" x [%"PRIuSIZE":%"PRIuSIZE"]\n",
491 count, (void*)fiber_pool, fiber_pool->used, fiber_pool->count, size, fiber_pool->vm_stack_size);
492 }
493
494 // Iterate over all stacks, initializing the vacancy list:
495 for (size_t i = 0; i < count; i += 1) {
496 void * base = (char*)allocation->base + (stride * i);
497 void * page = (char*)base + STACK_DIR_UPPER(size, 0);
498
499#if defined(_WIN32)
500 DWORD old_protect;
501
502 if (!VirtualProtect(page, RB_PAGE_SIZE, PAGE_READWRITE | PAGE_GUARD, &old_protect)) {
503 VirtualFree(allocation->base, 0, MEM_RELEASE);
504 rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
505 }
506#else
507 if (mprotect(page, RB_PAGE_SIZE, PROT_NONE) < 0) {
508 munmap(allocation->base, count*stride);
509 rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
510 }
511#endif
512
513 vacancies = fiber_pool_vacancy_initialize(
514 fiber_pool, vacancies,
515 (char*)base + STACK_DIR_UPPER(0, RB_PAGE_SIZE),
516 size
517 );
518
519#ifdef FIBER_POOL_ALLOCATION_FREE
520 vacancies->stack.allocation = allocation;
521#endif
522 }
523
524 // Insert the allocation into the head of the pool:
525 allocation->next = fiber_pool->allocations;
526
527#ifdef FIBER_POOL_ALLOCATION_FREE
528 if (allocation->next) {
529 allocation->next->previous = allocation;
530 }
531
532 allocation->previous = NULL;
533#endif
534
535 fiber_pool->allocations = allocation;
536 fiber_pool->vacancies = vacancies;
537 fiber_pool->count += count;
538
539 return allocation;
540}
541
542// Initialize the specified fiber pool with the given number of stacks.
543// @param vm_stack_size The size of the vm stack to allocate.
544static void
545fiber_pool_initialize(struct fiber_pool * fiber_pool, size_t size, size_t count, size_t vm_stack_size)
546{
547 VM_ASSERT(vm_stack_size < size);
548
549 fiber_pool->allocations = NULL;
550 fiber_pool->vacancies = NULL;
551 fiber_pool->size = ((size / RB_PAGE_SIZE) + 1) * RB_PAGE_SIZE;
552 fiber_pool->count = 0;
553 fiber_pool->initial_count = count;
554 fiber_pool->free_stacks = 1;
555 fiber_pool->used = 0;
556
557 fiber_pool->vm_stack_size = vm_stack_size;
558
559 fiber_pool_expand(fiber_pool, count);
560}
561
562#ifdef FIBER_POOL_ALLOCATION_FREE
563// Free the list of fiber pool allocations.
564static void
565fiber_pool_allocation_free(struct fiber_pool_allocation * allocation)
566{
567 STACK_GROW_DIR_DETECTION;
568
569 VM_ASSERT(allocation->used == 0);
570
571 if (DEBUG) fprintf(stderr, "fiber_pool_allocation_free: %p base=%p count=%"PRIuSIZE"\n", (void*)allocation, allocation->base, allocation->count);
572
573 size_t i;
574 for (i = 0; i < allocation->count; i += 1) {
575 void * base = (char*)allocation->base + (allocation->stride * i) + STACK_DIR_UPPER(0, RB_PAGE_SIZE);
576
577 struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, allocation->size);
578
579 // Pop the vacant stack off the free list:
580 fiber_pool_vacancy_remove(vacancy);
581 }
582
583#ifdef _WIN32
584 VirtualFree(allocation->base, 0, MEM_RELEASE);
585#else
586 munmap(allocation->base, allocation->stride * allocation->count);
587#endif
588
589 if (allocation->previous) {
590 allocation->previous->next = allocation->next;
591 }
592 else {
593 // We are the head of the list, so update the pool:
594 allocation->pool->allocations = allocation->next;
595 }
596
597 if (allocation->next) {
598 allocation->next->previous = allocation->previous;
599 }
600
601 allocation->pool->count -= allocation->count;
602
603 ruby_xfree(allocation);
604}
605#endif
606
607// Acquire a stack from the given fiber pool. If none are available, allocate more.
608static struct fiber_pool_stack
609fiber_pool_stack_acquire(struct fiber_pool * fiber_pool)
610{
611 struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pop(fiber_pool);
612
613 if (DEBUG) fprintf(stderr, "fiber_pool_stack_acquire: %p used=%"PRIuSIZE"\n", (void*)fiber_pool->vacancies, fiber_pool->used);
614
615 if (!vacancy) {
616 const size_t maximum = FIBER_POOL_ALLOCATION_MAXIMUM_SIZE;
617 const size_t minimum = fiber_pool->initial_count;
618
619 size_t count = fiber_pool->count;
620 if (count > maximum) count = maximum;
621 if (count < minimum) count = minimum;
622
623 fiber_pool_expand(fiber_pool, count);
624
625 // The free list should now contain some stacks:
626 VM_ASSERT(fiber_pool->vacancies);
627
628 vacancy = fiber_pool_vacancy_pop(fiber_pool);
629 }
630
631 VM_ASSERT(vacancy);
632 VM_ASSERT(vacancy->stack.base);
633
634 // Take the top item from the free list:
635 fiber_pool->used += 1;
636
637#ifdef FIBER_POOL_ALLOCATION_FREE
638 vacancy->stack.allocation->used += 1;
639#endif
640
641 fiber_pool_stack_reset(&vacancy->stack);
642
643 return vacancy->stack;
644}
645
646// We advise the operating system that the stack memory pages are no longer being used.
647// This introduce some performance overhead but allows system to relaim memory when there is pressure.
648static inline void
649fiber_pool_stack_free(struct fiber_pool_stack * stack)
650{
651 void * base = fiber_pool_stack_base(stack);
652 size_t size = stack->available;
653
654 // If this is not true, the vacancy information will almost certainly be destroyed:
655 VM_ASSERT(size <= (stack->size - RB_PAGE_SIZE));
656
657 if (DEBUG) fprintf(stderr, "fiber_pool_stack_free: %p+%"PRIuSIZE" [base=%p, size=%"PRIuSIZE"]\n", base, size, stack->base, stack->size);
658
659 // The pages being used by the stack can be returned back to the system.
660 // That doesn't change the page mapping, but it does allow the system to
661 // reclaim the physical memory.
662 // Since we no longer care about the data itself, we don't need to page
663 // out to disk, since that is costly. Not all systems support that, so
664 // we try our best to select the most efficient implementation.
665 // In addition, it's actually slightly desirable to not do anything here,
666 // but that results in higher memory usage.
667
668#ifdef __wasi__
669 // WebAssembly doesn't support madvise, so we just don't do anything.
670#elif VM_CHECK_MODE > 0 && defined(MADV_DONTNEED)
671 // This immediately discards the pages and the memory is reset to zero.
672 madvise(base, size, MADV_DONTNEED);
673#elif defined(MADV_FREE_REUSABLE)
674 // Darwin / macOS / iOS.
675 // Acknowledge the kernel down to the task info api we make this
676 // page reusable for future use.
677 // As for MADV_FREE_REUSE below we ensure in the rare occasions the task was not
678 // completed at the time of the call to re-iterate.
679 while (madvise(base, size, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN);
680#elif defined(MADV_FREE)
681 // Recent Linux.
682 madvise(base, size, MADV_FREE);
683#elif defined(MADV_DONTNEED)
684 // Old Linux.
685 madvise(base, size, MADV_DONTNEED);
686#elif defined(POSIX_MADV_DONTNEED)
687 // Solaris?
688 posix_madvise(base, size, POSIX_MADV_DONTNEED);
689#elif defined(_WIN32)
690 VirtualAlloc(base, size, MEM_RESET, PAGE_READWRITE);
691 // Not available in all versions of Windows.
692 //DiscardVirtualMemory(base, size);
693#endif
694}
695
696// Release and return a stack to the vacancy list.
697static void
698fiber_pool_stack_release(struct fiber_pool_stack * stack)
699{
700 struct fiber_pool * pool = stack->pool;
701 struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(stack->base, stack->size);
702
703 if (DEBUG) fprintf(stderr, "fiber_pool_stack_release: %p used=%"PRIuSIZE"\n", stack->base, stack->pool->used);
704
705 // Copy the stack details into the vacancy area:
706 vacancy->stack = *stack;
707 // After this point, be careful about updating/using state in stack, since it's copied to the vacancy area.
708
709 // Reset the stack pointers and reserve space for the vacancy data:
710 fiber_pool_vacancy_reset(vacancy);
711
712 // Push the vacancy into the vancancies list:
713 pool->vacancies = fiber_pool_vacancy_push(vacancy, stack->pool->vacancies);
714 pool->used -= 1;
715
716#ifdef FIBER_POOL_ALLOCATION_FREE
717 struct fiber_pool_allocation * allocation = stack->allocation;
718
719 allocation->used -= 1;
720
721 // Release address space and/or dirty memory:
722 if (allocation->used == 0) {
723 fiber_pool_allocation_free(allocation);
724 }
725 else if (stack->pool->free_stacks) {
726 fiber_pool_stack_free(&vacancy->stack);
727 }
728#else
729 // This is entirely optional, but clears the dirty flag from the stack memory, so it won't get swapped to disk when there is memory pressure:
730 if (stack->pool->free_stacks) {
731 fiber_pool_stack_free(&vacancy->stack);
732 }
733#endif
734}
735
736static inline void
737ec_switch(rb_thread_t *th, rb_fiber_t *fiber)
738{
739 rb_execution_context_t *ec = &fiber->cont.saved_ec;
740 rb_ractor_set_current_ec(th->ractor, th->ec = ec);
741 // ruby_current_execution_context_ptr = th->ec = ec;
742
743 /*
744 * timer-thread may set trap interrupt on previous th->ec at any time;
745 * ensure we do not delay (or lose) the trap interrupt handling.
746 */
747 if (th->vm->ractor.main_thread == th &&
748 rb_signal_buff_size() > 0) {
749 RUBY_VM_SET_TRAP_INTERRUPT(ec);
750 }
751
752 VM_ASSERT(ec->fiber_ptr->cont.self == 0 || ec->vm_stack != NULL);
753}
754
755static inline void
756fiber_restore_thread(rb_thread_t *th, rb_fiber_t *fiber)
757{
758 ec_switch(th, fiber);
759 VM_ASSERT(th->ec->fiber_ptr == fiber);
760}
761
762static COROUTINE
763fiber_entry(struct coroutine_context * from, struct coroutine_context * to)
764{
765 rb_fiber_t *fiber = to->argument;
766 rb_thread_t *thread = fiber->cont.saved_ec.thread_ptr;
767
768#ifdef COROUTINE_PTHREAD_CONTEXT
769 ruby_thread_set_native(thread);
770#endif
771
772 fiber_restore_thread(thread, fiber);
773
774 rb_fiber_start(fiber);
775
776#ifndef COROUTINE_PTHREAD_CONTEXT
777 VM_UNREACHABLE(fiber_entry);
778#endif
779}
780
781// Initialize a fiber's coroutine's machine stack and vm stack.
782static VALUE *
783fiber_initialize_coroutine(rb_fiber_t *fiber, size_t * vm_stack_size)
784{
785 struct fiber_pool * fiber_pool = fiber->stack.pool;
786 rb_execution_context_t *sec = &fiber->cont.saved_ec;
787 void * vm_stack = NULL;
788
789 VM_ASSERT(fiber_pool != NULL);
790
791 fiber->stack = fiber_pool_stack_acquire(fiber_pool);
792 vm_stack = fiber_pool_stack_alloca(&fiber->stack, fiber_pool->vm_stack_size);
793 *vm_stack_size = fiber_pool->vm_stack_size;
794
795 coroutine_initialize(&fiber->context, fiber_entry, fiber_pool_stack_base(&fiber->stack), fiber->stack.available);
796
797 // The stack for this execution context is the one we allocated:
798 sec->machine.stack_start = fiber->stack.current;
799 sec->machine.stack_maxsize = fiber->stack.available;
800
801 fiber->context.argument = (void*)fiber;
802
803 return vm_stack;
804}
805
806// Release the stack from the fiber, it's execution context, and return it to the fiber pool.
807static void
808fiber_stack_release(rb_fiber_t * fiber)
809{
810 rb_execution_context_t *ec = &fiber->cont.saved_ec;
811
812 if (DEBUG) fprintf(stderr, "fiber_stack_release: %p, stack.base=%p\n", (void*)fiber, fiber->stack.base);
813
814 // Return the stack back to the fiber pool if it wasn't already:
815 if (fiber->stack.base) {
816 fiber_pool_stack_release(&fiber->stack);
817 fiber->stack.base = NULL;
818 }
819
820 // The stack is no longer associated with this execution context:
821 rb_ec_clear_vm_stack(ec);
822}
823
824static const char *
825fiber_status_name(enum fiber_status s)
826{
827 switch (s) {
828 case FIBER_CREATED: return "created";
829 case FIBER_RESUMED: return "resumed";
830 case FIBER_SUSPENDED: return "suspended";
831 case FIBER_TERMINATED: return "terminated";
832 }
833 VM_UNREACHABLE(fiber_status_name);
834 return NULL;
835}
836
837static void
838fiber_verify(const rb_fiber_t *fiber)
839{
840#if VM_CHECK_MODE > 0
841 VM_ASSERT(fiber->cont.saved_ec.fiber_ptr == fiber);
842
843 switch (fiber->status) {
844 case FIBER_RESUMED:
845 VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
846 break;
847 case FIBER_SUSPENDED:
848 VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
849 break;
850 case FIBER_CREATED:
851 case FIBER_TERMINATED:
852 /* TODO */
853 break;
854 default:
855 VM_UNREACHABLE(fiber_verify);
856 }
857#endif
858}
859
860inline static void
861fiber_status_set(rb_fiber_t *fiber, enum fiber_status s)
862{
863 // if (DEBUG) fprintf(stderr, "fiber: %p, status: %s -> %s\n", (void *)fiber, fiber_status_name(fiber->status), fiber_status_name(s));
864 VM_ASSERT(!FIBER_TERMINATED_P(fiber));
865 VM_ASSERT(fiber->status != s);
866 fiber_verify(fiber);
867 fiber->status = s;
868}
869
870static rb_context_t *
871cont_ptr(VALUE obj)
872{
873 rb_context_t *cont;
874
875 TypedData_Get_Struct(obj, rb_context_t, &cont_data_type, cont);
876
877 return cont;
878}
879
880static rb_fiber_t *
881fiber_ptr(VALUE obj)
882{
883 rb_fiber_t *fiber;
884
885 TypedData_Get_Struct(obj, rb_fiber_t, &fiber_data_type, fiber);
886 if (!fiber) rb_raise(rb_eFiberError, "uninitialized fiber");
887
888 return fiber;
889}
890
891NOINLINE(static VALUE cont_capture(volatile int *volatile stat));
892
893#define THREAD_MUST_BE_RUNNING(th) do { \
894 if (!(th)->ec->tag) rb_raise(rb_eThreadError, "not running thread"); \
895 } while (0)
896
898rb_fiber_threadptr(const rb_fiber_t *fiber)
899{
900 return fiber->cont.saved_ec.thread_ptr;
901}
902
903static VALUE
904cont_thread_value(const rb_context_t *cont)
905{
906 return cont->saved_ec.thread_ptr->self;
907}
908
909static void
910cont_compact(void *ptr)
911{
912 rb_context_t *cont = ptr;
913
914 if (cont->self) {
915 cont->self = rb_gc_location(cont->self);
916 }
917 cont->value = rb_gc_location(cont->value);
918 rb_execution_context_update(&cont->saved_ec);
919}
920
921static void
922cont_mark(void *ptr)
923{
924 rb_context_t *cont = ptr;
925
926 RUBY_MARK_ENTER("cont");
927 if (cont->self) {
928 rb_gc_mark_movable(cont->self);
929 }
930 rb_gc_mark_movable(cont->value);
931
932 rb_execution_context_mark(&cont->saved_ec);
933 rb_gc_mark(cont_thread_value(cont));
934
935 if (cont->saved_vm_stack.ptr) {
936#ifdef CAPTURE_JUST_VALID_VM_STACK
937 rb_gc_mark_locations(cont->saved_vm_stack.ptr,
938 cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
939#else
940 rb_gc_mark_locations(cont->saved_vm_stack.ptr,
941 cont->saved_vm_stack.ptr, cont->saved_ec.stack_size);
942#endif
943 }
944
945 if (cont->machine.stack) {
946 if (cont->type == CONTINUATION_CONTEXT) {
947 /* cont */
948 rb_gc_mark_locations(cont->machine.stack,
949 cont->machine.stack + cont->machine.stack_size);
950 }
951 else {
952 /* fiber */
953 const rb_fiber_t *fiber = (rb_fiber_t*)cont;
954
955 if (!FIBER_TERMINATED_P(fiber)) {
956 rb_gc_mark_locations(cont->machine.stack,
957 cont->machine.stack + cont->machine.stack_size);
958 }
959 }
960 }
961
962 RUBY_MARK_LEAVE("cont");
963}
964
965#if 0
966static int
967fiber_is_root_p(const rb_fiber_t *fiber)
968{
969 return fiber == fiber->cont.saved_ec.thread_ptr->root_fiber;
970}
971#endif
972
973static void
974cont_free(void *ptr)
975{
976 rb_context_t *cont = ptr;
977
978 RUBY_FREE_ENTER("cont");
979
980 if (cont->type == CONTINUATION_CONTEXT) {
981 ruby_xfree(cont->saved_ec.vm_stack);
982 ruby_xfree(cont->ensure_array);
983 RUBY_FREE_UNLESS_NULL(cont->machine.stack);
984 }
985 else {
986 rb_fiber_t *fiber = (rb_fiber_t*)cont;
987 coroutine_destroy(&fiber->context);
988 fiber_stack_release(fiber);
989 }
990
991 RUBY_FREE_UNLESS_NULL(cont->saved_vm_stack.ptr);
992
993 if (mjit_enabled) {
994 VM_ASSERT(cont->mjit_cont != NULL);
995 mjit_cont_free(cont->mjit_cont);
996 }
997 /* free rb_cont_t or rb_fiber_t */
998 ruby_xfree(ptr);
999 RUBY_FREE_LEAVE("cont");
1000}
1001
1002static size_t
1003cont_memsize(const void *ptr)
1004{
1005 const rb_context_t *cont = ptr;
1006 size_t size = 0;
1007
1008 size = sizeof(*cont);
1009 if (cont->saved_vm_stack.ptr) {
1010#ifdef CAPTURE_JUST_VALID_VM_STACK
1011 size_t n = (cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
1012#else
1013 size_t n = cont->saved_ec.vm_stack_size;
1014#endif
1015 size += n * sizeof(*cont->saved_vm_stack.ptr);
1016 }
1017
1018 if (cont->machine.stack) {
1019 size += cont->machine.stack_size * sizeof(*cont->machine.stack);
1020 }
1021
1022 return size;
1023}
1024
1025void
1026rb_fiber_update_self(rb_fiber_t *fiber)
1027{
1028 if (fiber->cont.self) {
1029 fiber->cont.self = rb_gc_location(fiber->cont.self);
1030 }
1031 else {
1032 rb_execution_context_update(&fiber->cont.saved_ec);
1033 }
1034}
1035
1036void
1037rb_fiber_mark_self(const rb_fiber_t *fiber)
1038{
1039 if (fiber->cont.self) {
1040 rb_gc_mark_movable(fiber->cont.self);
1041 }
1042 else {
1043 rb_execution_context_mark(&fiber->cont.saved_ec);
1044 }
1045}
1046
1047static void
1048fiber_compact(void *ptr)
1049{
1050 rb_fiber_t *fiber = ptr;
1051 fiber->first_proc = rb_gc_location(fiber->first_proc);
1052
1053 if (fiber->prev) rb_fiber_update_self(fiber->prev);
1054
1055 cont_compact(&fiber->cont);
1056 fiber_verify(fiber);
1057}
1058
1059static void
1060fiber_mark(void *ptr)
1061{
1062 rb_fiber_t *fiber = ptr;
1063 RUBY_MARK_ENTER("cont");
1064 fiber_verify(fiber);
1065 rb_gc_mark_movable(fiber->first_proc);
1066 if (fiber->prev) rb_fiber_mark_self(fiber->prev);
1067 cont_mark(&fiber->cont);
1068 RUBY_MARK_LEAVE("cont");
1069}
1070
1071static void
1072fiber_free(void *ptr)
1073{
1074 rb_fiber_t *fiber = ptr;
1075 RUBY_FREE_ENTER("fiber");
1076
1077 if (DEBUG) fprintf(stderr, "fiber_free: %p[%p]\n", (void *)fiber, fiber->stack.base);
1078
1079 if (fiber->cont.saved_ec.local_storage) {
1080 rb_id_table_free(fiber->cont.saved_ec.local_storage);
1081 }
1082
1083 cont_free(&fiber->cont);
1084 RUBY_FREE_LEAVE("fiber");
1085}
1086
1087static size_t
1088fiber_memsize(const void *ptr)
1089{
1090 const rb_fiber_t *fiber = ptr;
1091 size_t size = sizeof(*fiber);
1092 const rb_execution_context_t *saved_ec = &fiber->cont.saved_ec;
1093 const rb_thread_t *th = rb_ec_thread_ptr(saved_ec);
1094
1095 /*
1096 * vm.c::thread_memsize already counts th->ec->local_storage
1097 */
1098 if (saved_ec->local_storage && fiber != th->root_fiber) {
1099 size += rb_id_table_memsize(saved_ec->local_storage);
1100 }
1101 size += cont_memsize(&fiber->cont);
1102 return size;
1103}
1104
1105VALUE
1107{
1108 return RBOOL(rb_typeddata_is_kind_of(obj, &fiber_data_type));
1109}
1110
1111static void
1112cont_save_machine_stack(rb_thread_t *th, rb_context_t *cont)
1113{
1114 size_t size;
1115
1116 SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
1117
1118 if (th->ec->machine.stack_start > th->ec->machine.stack_end) {
1119 size = cont->machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
1120 cont->machine.stack_src = th->ec->machine.stack_end;
1121 }
1122 else {
1123 size = cont->machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
1124 cont->machine.stack_src = th->ec->machine.stack_start;
1125 }
1126
1127 if (cont->machine.stack) {
1128 REALLOC_N(cont->machine.stack, VALUE, size);
1129 }
1130 else {
1131 cont->machine.stack = ALLOC_N(VALUE, size);
1132 }
1133
1134 FLUSH_REGISTER_WINDOWS;
1135 MEMCPY(cont->machine.stack, cont->machine.stack_src, VALUE, size);
1136}
1137
1138static const rb_data_type_t cont_data_type = {
1139 "continuation",
1140 {cont_mark, cont_free, cont_memsize, cont_compact},
1141 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
1142};
1143
1144static inline void
1145cont_save_thread(rb_context_t *cont, rb_thread_t *th)
1146{
1147 rb_execution_context_t *sec = &cont->saved_ec;
1148
1149 VM_ASSERT(th->status == THREAD_RUNNABLE);
1150
1151 /* save thread context */
1152 *sec = *th->ec;
1153
1154 /* saved_ec->machine.stack_end should be NULL */
1155 /* because it may happen GC afterward */
1156 sec->machine.stack_end = NULL;
1157}
1158
1159static void
1160cont_init_mjit_cont(rb_context_t *cont)
1161{
1162 VM_ASSERT(cont->mjit_cont == NULL);
1163 if (mjit_enabled) {
1164 cont->mjit_cont = mjit_cont_new(&(cont->saved_ec));
1165 }
1166}
1167
1168static void
1169cont_init(rb_context_t *cont, rb_thread_t *th)
1170{
1171 /* save thread context */
1172 cont_save_thread(cont, th);
1173 cont->saved_ec.thread_ptr = th;
1174 cont->saved_ec.local_storage = NULL;
1175 cont->saved_ec.local_storage_recursive_hash = Qnil;
1176 cont->saved_ec.local_storage_recursive_hash_for_trace = Qnil;
1177 cont_init_mjit_cont(cont);
1178}
1179
1180static rb_context_t *
1181cont_new(VALUE klass)
1182{
1183 rb_context_t *cont;
1184 volatile VALUE contval;
1185 rb_thread_t *th = GET_THREAD();
1186
1187 THREAD_MUST_BE_RUNNING(th);
1188 contval = TypedData_Make_Struct(klass, rb_context_t, &cont_data_type, cont);
1189 cont->self = contval;
1190 cont_init(cont, th);
1191 return cont;
1192}
1193
1194VALUE
1195rb_fiberptr_self(struct rb_fiber_struct *fiber)
1196{
1197 return fiber->cont.self;
1198}
1199
1200unsigned int
1201rb_fiberptr_blocking(struct rb_fiber_struct *fiber)
1202{
1203 return fiber->blocking;
1204}
1205
1206// This is used for root_fiber because other fibers call cont_init_mjit_cont through cont_new.
1207void
1208rb_fiber_init_mjit_cont(struct rb_fiber_struct *fiber)
1209{
1210 cont_init_mjit_cont(&fiber->cont);
1211}
1212
1213#if 0
1214void
1215show_vm_stack(const rb_execution_context_t *ec)
1216{
1217 VALUE *p = ec->vm_stack;
1218 while (p < ec->cfp->sp) {
1219 fprintf(stderr, "%3d ", (int)(p - ec->vm_stack));
1220 rb_obj_info_dump(*p);
1221 p++;
1222 }
1223}
1224
1225void
1226show_vm_pcs(const rb_control_frame_t *cfp,
1227 const rb_control_frame_t *end_of_cfp)
1228{
1229 int i=0;
1230 while (cfp != end_of_cfp) {
1231 int pc = 0;
1232 if (cfp->iseq) {
1233 pc = cfp->pc - cfp->iseq->body->iseq_encoded;
1234 }
1235 fprintf(stderr, "%2d pc: %d\n", i++, pc);
1236 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
1237 }
1238}
1239#endif
1240COMPILER_WARNING_PUSH
1241#ifdef __clang__
1242COMPILER_WARNING_IGNORED(-Wduplicate-decl-specifier)
1243#endif
1244static VALUE
1245cont_capture(volatile int *volatile stat)
1246{
1247 rb_context_t *volatile cont;
1248 rb_thread_t *th = GET_THREAD();
1249 volatile VALUE contval;
1250 const rb_execution_context_t *ec = th->ec;
1251
1252 THREAD_MUST_BE_RUNNING(th);
1253 rb_vm_stack_to_heap(th->ec);
1254 cont = cont_new(rb_cContinuation);
1255 contval = cont->self;
1256
1257#ifdef CAPTURE_JUST_VALID_VM_STACK
1258 cont->saved_vm_stack.slen = ec->cfp->sp - ec->vm_stack;
1259 cont->saved_vm_stack.clen = ec->vm_stack + ec->vm_stack_size - (VALUE*)ec->cfp;
1260 cont->saved_vm_stack.ptr = ALLOC_N(VALUE, cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
1261 MEMCPY(cont->saved_vm_stack.ptr,
1262 ec->vm_stack,
1263 VALUE, cont->saved_vm_stack.slen);
1264 MEMCPY(cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
1265 (VALUE*)ec->cfp,
1266 VALUE,
1267 cont->saved_vm_stack.clen);
1268#else
1269 cont->saved_vm_stack.ptr = ALLOC_N(VALUE, ec->vm_stack_size);
1270 MEMCPY(cont->saved_vm_stack.ptr, ec->vm_stack, VALUE, ec->vm_stack_size);
1271#endif
1272 // At this point, `cfp` is valid but `vm_stack` should be cleared:
1273 rb_ec_set_vm_stack(&cont->saved_ec, NULL, 0);
1274 VM_ASSERT(cont->saved_ec.cfp != NULL);
1275 cont_save_machine_stack(th, cont);
1276
1277 /* backup ensure_list to array for search in another context */
1278 {
1280 int size = 0;
1281 rb_ensure_entry_t *entry;
1282 for (p=th->ec->ensure_list; p; p=p->next)
1283 size++;
1284 entry = cont->ensure_array = ALLOC_N(rb_ensure_entry_t,size+1);
1285 for (p=th->ec->ensure_list; p; p=p->next) {
1286 if (!p->entry.marker)
1287 p->entry.marker = rb_ary_tmp_new(0); /* dummy object */
1288 *entry++ = p->entry;
1289 }
1290 entry->marker = 0;
1291 }
1292
1293 if (ruby_setjmp(cont->jmpbuf)) {
1294 VALUE value;
1295
1296 VAR_INITIALIZED(cont);
1297 value = cont->value;
1298 if (cont->argc == -1) rb_exc_raise(value);
1299 cont->value = Qnil;
1300 *stat = 1;
1301 return value;
1302 }
1303 else {
1304 *stat = 0;
1305 return contval;
1306 }
1307}
1308COMPILER_WARNING_POP
1309
1310static inline void
1311cont_restore_thread(rb_context_t *cont)
1312{
1313 rb_thread_t *th = GET_THREAD();
1314
1315 /* restore thread context */
1316 if (cont->type == CONTINUATION_CONTEXT) {
1317 /* continuation */
1318 rb_execution_context_t *sec = &cont->saved_ec;
1319 rb_fiber_t *fiber = NULL;
1320
1321 if (sec->fiber_ptr != NULL) {
1322 fiber = sec->fiber_ptr;
1323 }
1324 else if (th->root_fiber) {
1325 fiber = th->root_fiber;
1326 }
1327
1328 if (fiber && th->ec != &fiber->cont.saved_ec) {
1329 ec_switch(th, fiber);
1330 }
1331
1332 if (th->ec->trace_arg != sec->trace_arg) {
1333 rb_raise(rb_eRuntimeError, "can't call across trace_func");
1334 }
1335
1336 /* copy vm stack */
1337#ifdef CAPTURE_JUST_VALID_VM_STACK
1338 MEMCPY(th->ec->vm_stack,
1339 cont->saved_vm_stack.ptr,
1340 VALUE, cont->saved_vm_stack.slen);
1341 MEMCPY(th->ec->vm_stack + th->ec->vm_stack_size - cont->saved_vm_stack.clen,
1342 cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
1343 VALUE, cont->saved_vm_stack.clen);
1344#else
1345 MEMCPY(th->ec->vm_stack, cont->saved_vm_stack.ptr, VALUE, sec->vm_stack_size);
1346#endif
1347 /* other members of ec */
1348
1349 th->ec->cfp = sec->cfp;
1350 th->ec->raised_flag = sec->raised_flag;
1351 th->ec->tag = sec->tag;
1352 th->ec->root_lep = sec->root_lep;
1353 th->ec->root_svar = sec->root_svar;
1354 th->ec->ensure_list = sec->ensure_list;
1355 th->ec->errinfo = sec->errinfo;
1356
1357 VM_ASSERT(th->ec->vm_stack != NULL);
1358 }
1359 else {
1360 /* fiber */
1361 fiber_restore_thread(th, (rb_fiber_t*)cont);
1362 }
1363}
1364
1365NOINLINE(static void fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber));
1366
1367static void
1368fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber)
1369{
1370 rb_thread_t *th = GET_THREAD();
1371
1372 /* save old_fiber's machine stack - to ensure efficient garbage collection */
1373 if (!FIBER_TERMINATED_P(old_fiber)) {
1374 STACK_GROW_DIR_DETECTION;
1375 SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
1376 if (STACK_DIR_UPPER(0, 1)) {
1377 old_fiber->cont.machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
1378 old_fiber->cont.machine.stack = th->ec->machine.stack_end;
1379 }
1380 else {
1381 old_fiber->cont.machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
1382 old_fiber->cont.machine.stack = th->ec->machine.stack_start;
1383 }
1384 }
1385
1386 /* exchange machine_stack_start between old_fiber and new_fiber */
1387 old_fiber->cont.saved_ec.machine.stack_start = th->ec->machine.stack_start;
1388
1389 /* old_fiber->machine.stack_end should be NULL */
1390 old_fiber->cont.saved_ec.machine.stack_end = NULL;
1391
1392 // if (DEBUG) fprintf(stderr, "fiber_setcontext: %p[%p] -> %p[%p]\n", (void*)old_fiber, old_fiber->stack.base, (void*)new_fiber, new_fiber->stack.base);
1393
1394 /* swap machine context */
1395 struct coroutine_context * from = coroutine_transfer(&old_fiber->context, &new_fiber->context);
1396
1397 if (from == NULL) {
1398 rb_syserr_fail(errno, "coroutine_transfer");
1399 }
1400
1401 /* restore thread context */
1402 fiber_restore_thread(th, old_fiber);
1403
1404 // It's possible to get here, and new_fiber is already freed.
1405 // if (DEBUG) fprintf(stderr, "fiber_setcontext: %p[%p] <- %p[%p]\n", (void*)old_fiber, old_fiber->stack.base, (void*)new_fiber, new_fiber->stack.base);
1406}
1407
1408NOINLINE(NORETURN(static void cont_restore_1(rb_context_t *)));
1409
1410static void
1411cont_restore_1(rb_context_t *cont)
1412{
1413 cont_restore_thread(cont);
1414
1415 /* restore machine stack */
1416#ifdef _M_AMD64
1417 {
1418 /* workaround for x64 SEH */
1419 jmp_buf buf;
1420 setjmp(buf);
1421 _JUMP_BUFFER *bp = (void*)&cont->jmpbuf;
1422 bp->Frame = ((_JUMP_BUFFER*)((void*)&buf))->Frame;
1423 }
1424#endif
1425 if (cont->machine.stack_src) {
1426 FLUSH_REGISTER_WINDOWS;
1427 MEMCPY(cont->machine.stack_src, cont->machine.stack,
1428 VALUE, cont->machine.stack_size);
1429 }
1430
1431 ruby_longjmp(cont->jmpbuf, 1);
1432}
1433
1434NORETURN(NOINLINE(static void cont_restore_0(rb_context_t *, VALUE *)));
1435
1436static void
1437cont_restore_0(rb_context_t *cont, VALUE *addr_in_prev_frame)
1438{
1439 if (cont->machine.stack_src) {
1440#ifdef HAVE_ALLOCA
1441#define STACK_PAD_SIZE 1
1442#else
1443#define STACK_PAD_SIZE 1024
1444#endif
1445 VALUE space[STACK_PAD_SIZE];
1446
1447#if !STACK_GROW_DIRECTION
1448 if (addr_in_prev_frame > &space[0]) {
1449 /* Stack grows downward */
1450#endif
1451#if STACK_GROW_DIRECTION <= 0
1452 volatile VALUE *const end = cont->machine.stack_src;
1453 if (&space[0] > end) {
1454# ifdef HAVE_ALLOCA
1455 volatile VALUE *sp = ALLOCA_N(VALUE, &space[0] - end);
1456 space[0] = *sp;
1457# else
1458 cont_restore_0(cont, &space[0]);
1459# endif
1460 }
1461#endif
1462#if !STACK_GROW_DIRECTION
1463 }
1464 else {
1465 /* Stack grows upward */
1466#endif
1467#if STACK_GROW_DIRECTION >= 0
1468 volatile VALUE *const end = cont->machine.stack_src + cont->machine.stack_size;
1469 if (&space[STACK_PAD_SIZE] < end) {
1470# ifdef HAVE_ALLOCA
1471 volatile VALUE *sp = ALLOCA_N(VALUE, end - &space[STACK_PAD_SIZE]);
1472 space[0] = *sp;
1473# else
1474 cont_restore_0(cont, &space[STACK_PAD_SIZE-1]);
1475# endif
1476 }
1477#endif
1478#if !STACK_GROW_DIRECTION
1479 }
1480#endif
1481 }
1482 cont_restore_1(cont);
1483}
1484
1485/*
1486 * Document-class: Continuation
1487 *
1488 * Continuation objects are generated by Kernel#callcc,
1489 * after having +require+d <i>continuation</i>. They hold
1490 * a return address and execution context, allowing a nonlocal return
1491 * to the end of the #callcc block from anywhere within a
1492 * program. Continuations are somewhat analogous to a structured
1493 * version of C's <code>setjmp/longjmp</code> (although they contain
1494 * more state, so you might consider them closer to threads).
1495 *
1496 * For instance:
1497 *
1498 * require "continuation"
1499 * arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
1500 * callcc{|cc| $cc = cc}
1501 * puts(message = arr.shift)
1502 * $cc.call unless message =~ /Max/
1503 *
1504 * <em>produces:</em>
1505 *
1506 * Freddie
1507 * Herbie
1508 * Ron
1509 * Max
1510 *
1511 * Also you can call callcc in other methods:
1512 *
1513 * require "continuation"
1514 *
1515 * def g
1516 * arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
1517 * cc = callcc { |cc| cc }
1518 * puts arr.shift
1519 * return cc, arr.size
1520 * end
1521 *
1522 * def f
1523 * c, size = g
1524 * c.call(c) if size > 1
1525 * end
1526 *
1527 * f
1528 *
1529 * This (somewhat contrived) example allows the inner loop to abandon
1530 * processing early:
1531 *
1532 * require "continuation"
1533 * callcc {|cont|
1534 * for i in 0..4
1535 * print "#{i}: "
1536 * for j in i*5...(i+1)*5
1537 * cont.call() if j == 17
1538 * printf "%3d", j
1539 * end
1540 * end
1541 * }
1542 * puts
1543 *
1544 * <em>produces:</em>
1545 *
1546 * 0: 0 1 2 3 4
1547 * 1: 5 6 7 8 9
1548 * 2: 10 11 12 13 14
1549 * 3: 15 16
1550 */
1551
1552/*
1553 * call-seq:
1554 * callcc {|cont| block } -> obj
1555 *
1556 * Generates a Continuation object, which it passes to
1557 * the associated block. You need to <code>require
1558 * 'continuation'</code> before using this method. Performing a
1559 * <em>cont</em><code>.call</code> will cause the #callcc
1560 * to return (as will falling through the end of the block). The
1561 * value returned by the #callcc is the value of the
1562 * block, or the value passed to <em>cont</em><code>.call</code>. See
1563 * class Continuation for more details. Also see
1564 * Kernel#throw for an alternative mechanism for
1565 * unwinding a call stack.
1566 */
1567
1568static VALUE
1569rb_callcc(VALUE self)
1570{
1571 volatile int called;
1572 volatile VALUE val = cont_capture(&called);
1573
1574 if (called) {
1575 return val;
1576 }
1577 else {
1578 return rb_yield(val);
1579 }
1580}
1581
1582static VALUE
1583make_passing_arg(int argc, const VALUE *argv)
1584{
1585 switch (argc) {
1586 case -1:
1587 return argv[0];
1588 case 0:
1589 return Qnil;
1590 case 1:
1591 return argv[0];
1592 default:
1593 return rb_ary_new4(argc, argv);
1594 }
1595}
1596
1597typedef VALUE e_proc(VALUE);
1598
1599/* CAUTION!! : Currently, error in rollback_func is not supported */
1600/* same as rb_protect if set rollback_func to NULL */
1601void
1602ruby_register_rollback_func_for_ensure(e_proc *ensure_func, e_proc *rollback_func)
1603{
1604 st_table **table_p = &GET_VM()->ensure_rollback_table;
1605 if (UNLIKELY(*table_p == NULL)) {
1606 *table_p = st_init_numtable();
1607 }
1608 st_insert(*table_p, (st_data_t)ensure_func, (st_data_t)rollback_func);
1609}
1610
1611static inline e_proc *
1612lookup_rollback_func(e_proc *ensure_func)
1613{
1614 st_table *table = GET_VM()->ensure_rollback_table;
1615 st_data_t val;
1616 if (table && st_lookup(table, (st_data_t)ensure_func, &val))
1617 return (e_proc *) val;
1618 return (e_proc *) Qundef;
1619}
1620
1621
1622static inline void
1623rollback_ensure_stack(VALUE self,rb_ensure_list_t *current,rb_ensure_entry_t *target)
1624{
1626 rb_ensure_entry_t *entry;
1627 size_t i, j;
1628 size_t cur_size;
1629 size_t target_size;
1630 size_t base_point;
1631 e_proc *func;
1632
1633 cur_size = 0;
1634 for (p=current; p; p=p->next)
1635 cur_size++;
1636 target_size = 0;
1637 for (entry=target; entry->marker; entry++)
1638 target_size++;
1639
1640 /* search common stack point */
1641 p = current;
1642 base_point = cur_size;
1643 while (base_point) {
1644 if (target_size >= base_point &&
1645 p->entry.marker == target[target_size - base_point].marker)
1646 break;
1647 base_point --;
1648 p = p->next;
1649 }
1650
1651 /* rollback function check */
1652 for (i=0; i < target_size - base_point; i++) {
1653 if (!lookup_rollback_func(target[i].e_proc)) {
1654 rb_raise(rb_eRuntimeError, "continuation called from out of critical rb_ensure scope");
1655 }
1656 }
1657 /* pop ensure stack */
1658 while (cur_size > base_point) {
1659 /* escape from ensure block */
1660 (*current->entry.e_proc)(current->entry.data2);
1661 current = current->next;
1662 cur_size--;
1663 }
1664 /* push ensure stack */
1665 for (j = 0; j < i; j++) {
1666 func = lookup_rollback_func(target[i - j - 1].e_proc);
1667 if ((VALUE)func != Qundef) {
1668 (*func)(target[i - j - 1].data2);
1669 }
1670 }
1671}
1672
1673NORETURN(static VALUE rb_cont_call(int argc, VALUE *argv, VALUE contval));
1674
1675/*
1676 * call-seq:
1677 * cont.call(args, ...)
1678 * cont[args, ...]
1679 *
1680 * Invokes the continuation. The program continues from the end of
1681 * the #callcc block. If no arguments are given, the original #callcc
1682 * returns +nil+. If one argument is given, #callcc returns
1683 * it. Otherwise, an array containing <i>args</i> is returned.
1684 *
1685 * callcc {|cont| cont.call } #=> nil
1686 * callcc {|cont| cont.call 1 } #=> 1
1687 * callcc {|cont| cont.call 1, 2, 3 } #=> [1, 2, 3]
1688 */
1689
1690static VALUE
1691rb_cont_call(int argc, VALUE *argv, VALUE contval)
1692{
1693 rb_context_t *cont = cont_ptr(contval);
1694 rb_thread_t *th = GET_THREAD();
1695
1696 if (cont_thread_value(cont) != th->self) {
1697 rb_raise(rb_eRuntimeError, "continuation called across threads");
1698 }
1699 if (cont->saved_ec.fiber_ptr) {
1700 if (th->ec->fiber_ptr != cont->saved_ec.fiber_ptr) {
1701 rb_raise(rb_eRuntimeError, "continuation called across fiber");
1702 }
1703 }
1704 rollback_ensure_stack(contval, th->ec->ensure_list, cont->ensure_array);
1705
1706 cont->argc = argc;
1707 cont->value = make_passing_arg(argc, argv);
1708
1709 cont_restore_0(cont, &contval);
1711}
1712
1713/*********/
1714/* fiber */
1715/*********/
1716
1717/*
1718 * Document-class: Fiber
1719 *
1720 * Fibers are primitives for implementing light weight cooperative
1721 * concurrency in Ruby. Basically they are a means of creating code blocks
1722 * that can be paused and resumed, much like threads. The main difference
1723 * is that they are never preempted and that the scheduling must be done by
1724 * the programmer and not the VM.
1725 *
1726 * As opposed to other stackless light weight concurrency models, each fiber
1727 * comes with a stack. This enables the fiber to be paused from deeply
1728 * nested function calls within the fiber block. See the ruby(1)
1729 * manpage to configure the size of the fiber stack(s).
1730 *
1731 * When a fiber is created it will not run automatically. Rather it must
1732 * be explicitly asked to run using the Fiber#resume method.
1733 * The code running inside the fiber can give up control by calling
1734 * Fiber.yield in which case it yields control back to caller (the
1735 * caller of the Fiber#resume).
1736 *
1737 * Upon yielding or termination the Fiber returns the value of the last
1738 * executed expression
1739 *
1740 * For instance:
1741 *
1742 * fiber = Fiber.new do
1743 * Fiber.yield 1
1744 * 2
1745 * end
1746 *
1747 * puts fiber.resume
1748 * puts fiber.resume
1749 * puts fiber.resume
1750 *
1751 * <em>produces</em>
1752 *
1753 * 1
1754 * 2
1755 * FiberError: dead fiber called
1756 *
1757 * The Fiber#resume method accepts an arbitrary number of parameters,
1758 * if it is the first call to #resume then they will be passed as
1759 * block arguments. Otherwise they will be the return value of the
1760 * call to Fiber.yield
1761 *
1762 * Example:
1763 *
1764 * fiber = Fiber.new do |first|
1765 * second = Fiber.yield first + 2
1766 * end
1767 *
1768 * puts fiber.resume 10
1769 * puts fiber.resume 1_000_000
1770 * puts fiber.resume "The fiber will be dead before I can cause trouble"
1771 *
1772 * <em>produces</em>
1773 *
1774 * 12
1775 * 1000000
1776 * FiberError: dead fiber called
1777 *
1778 * == Non-blocking Fibers
1779 *
1780 * The concept of <em>non-blocking fiber</em> was introduced in Ruby 3.0.
1781 * A non-blocking fiber, when reaching a operation that would normally block
1782 * the fiber (like <code>sleep</code>, or wait for another process or I/O)
1783 * will yield control to other fibers and allow the <em>scheduler</em> to
1784 * handle blocking and waking up (resuming) this fiber when it can proceed.
1785 *
1786 * For a Fiber to behave as non-blocking, it need to be created in Fiber.new with
1787 * <tt>blocking: false</tt> (which is the default), and Fiber.scheduler
1788 * should be set with Fiber.set_scheduler. If Fiber.scheduler is not set in
1789 * the current thread, blocking and non-blocking fibers' behavior is identical.
1790 *
1791 * Ruby doesn't provide a scheduler class: it is expected to be implemented by
1792 * the user and correspond to Fiber::SchedulerInterface.
1793 *
1794 * There is also Fiber.schedule method, which is expected to immediately perform
1795 * the given block in a non-blocking manner. Its actual implementation is up to
1796 * the scheduler.
1797 *
1798 */
1799
1800static const rb_data_type_t fiber_data_type = {
1801 "fiber",
1802 {fiber_mark, fiber_free, fiber_memsize, fiber_compact,},
1803 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
1804};
1805
1806static VALUE
1807fiber_alloc(VALUE klass)
1808{
1809 return TypedData_Wrap_Struct(klass, &fiber_data_type, 0);
1810}
1811
1812static rb_fiber_t*
1813fiber_t_alloc(VALUE fiber_value, unsigned int blocking)
1814{
1815 rb_fiber_t *fiber;
1816 rb_thread_t *th = GET_THREAD();
1817
1818 if (DATA_PTR(fiber_value) != 0) {
1819 rb_raise(rb_eRuntimeError, "cannot initialize twice");
1820 }
1821
1822 THREAD_MUST_BE_RUNNING(th);
1823 fiber = ZALLOC(rb_fiber_t);
1824 fiber->cont.self = fiber_value;
1825 fiber->cont.type = FIBER_CONTEXT;
1826 fiber->blocking = blocking;
1827 cont_init(&fiber->cont, th);
1828
1829 fiber->cont.saved_ec.fiber_ptr = fiber;
1830 rb_ec_clear_vm_stack(&fiber->cont.saved_ec);
1831
1832 fiber->prev = NULL;
1833
1834 /* fiber->status == 0 == CREATED
1835 * So that we don't need to set status: fiber_status_set(fiber, FIBER_CREATED); */
1836 VM_ASSERT(FIBER_CREATED_P(fiber));
1837
1838 DATA_PTR(fiber_value) = fiber;
1839
1840 return fiber;
1841}
1842
1843static VALUE
1844fiber_initialize(VALUE self, VALUE proc, struct fiber_pool * fiber_pool, unsigned int blocking)
1845{
1846 rb_fiber_t *fiber = fiber_t_alloc(self, blocking);
1847
1848 fiber->first_proc = proc;
1849 fiber->stack.base = NULL;
1850 fiber->stack.pool = fiber_pool;
1851
1852 return self;
1853}
1854
1855static void
1856fiber_prepare_stack(rb_fiber_t *fiber)
1857{
1858 rb_context_t *cont = &fiber->cont;
1859 rb_execution_context_t *sec = &cont->saved_ec;
1860
1861 size_t vm_stack_size = 0;
1862 VALUE *vm_stack = fiber_initialize_coroutine(fiber, &vm_stack_size);
1863
1864 /* initialize cont */
1865 cont->saved_vm_stack.ptr = NULL;
1866 rb_ec_initialize_vm_stack(sec, vm_stack, vm_stack_size / sizeof(VALUE));
1867
1868 sec->tag = NULL;
1869 sec->local_storage = NULL;
1870 sec->local_storage_recursive_hash = Qnil;
1871 sec->local_storage_recursive_hash_for_trace = Qnil;
1872}
1873
1874static struct fiber_pool *
1875rb_fiber_pool_default(VALUE pool)
1876{
1877 return &shared_fiber_pool;
1878}
1879
1880/* :nodoc: */
1881static VALUE
1882rb_fiber_initialize_kw(int argc, VALUE* argv, VALUE self, int kw_splat)
1883{
1884 VALUE pool = Qnil;
1885 VALUE blocking = Qfalse;
1886
1887 if (kw_splat != RB_NO_KEYWORDS) {
1888 VALUE options = Qnil;
1889 VALUE arguments[2] = {Qundef};
1890
1891 argc = rb_scan_args_kw(kw_splat, argc, argv, ":", &options);
1892 rb_get_kwargs(options, fiber_initialize_keywords, 0, 2, arguments);
1893
1894 if (arguments[0] != Qundef) {
1895 blocking = arguments[0];
1896 }
1897
1898 if (arguments[1] != Qundef) {
1899 pool = arguments[1];
1900 }
1901 }
1902
1903 return fiber_initialize(self, rb_block_proc(), rb_fiber_pool_default(pool), RTEST(blocking));
1904}
1905
1906/*
1907 * call-seq:
1908 * Fiber.new(blocking: false) { |*args| ... } -> fiber
1909 *
1910 * Creates new Fiber. Initially, the fiber is not running and can be resumed with
1911 * #resume. Arguments to the first #resume call will be passed to the block:
1912 *
1913 * f = Fiber.new do |initial|
1914 * current = initial
1915 * loop do
1916 * puts "current: #{current.inspect}"
1917 * current = Fiber.yield
1918 * end
1919 * end
1920 * f.resume(100) # prints: current: 100
1921 * f.resume(1, 2, 3) # prints: current: [1, 2, 3]
1922 * f.resume # prints: current: nil
1923 * # ... and so on ...
1924 *
1925 * If <tt>blocking: false</tt> is passed to <tt>Fiber.new</tt>, _and_ current thread
1926 * has a Fiber.scheduler defined, the Fiber becomes non-blocking (see "Non-blocking
1927 * Fibers" section in class docs).
1928 */
1929static VALUE
1930rb_fiber_initialize(int argc, VALUE* argv, VALUE self)
1931{
1932 return rb_fiber_initialize_kw(argc, argv, self, rb_keyword_given_p());
1933}
1934
1935VALUE
1936rb_fiber_new(rb_block_call_func_t func, VALUE obj)
1937{
1938 return fiber_initialize(fiber_alloc(rb_cFiber), rb_proc_new(func, obj), rb_fiber_pool_default(Qnil), 1);
1939}
1940
1941static VALUE
1942rb_fiber_s_schedule_kw(int argc, VALUE* argv, int kw_splat)
1943{
1944 rb_thread_t * th = GET_THREAD();
1945 VALUE scheduler = th->scheduler;
1946 VALUE fiber = Qnil;
1947
1948 if (scheduler != Qnil) {
1949 fiber = rb_funcall_passing_block_kw(scheduler, rb_intern("fiber"), argc, argv, kw_splat);
1950 }
1951 else {
1952 rb_raise(rb_eRuntimeError, "No scheduler is available!");
1953 }
1954
1955 return fiber;
1956}
1957
1958/*
1959 * call-seq:
1960 * Fiber.schedule { |*args| ... } -> fiber
1961 *
1962 * The method is <em>expected</em> to immediately run the provided block of code in a
1963 * separate non-blocking fiber.
1964 *
1965 * puts "Go to sleep!"
1966 *
1967 * Fiber.set_scheduler(MyScheduler.new)
1968 *
1969 * Fiber.schedule do
1970 * puts "Going to sleep"
1971 * sleep(1)
1972 * puts "I slept well"
1973 * end
1974 *
1975 * puts "Wakey-wakey, sleepyhead"
1976 *
1977 * Assuming MyScheduler is properly implemented, this program will produce:
1978 *
1979 * Go to sleep!
1980 * Going to sleep
1981 * Wakey-wakey, sleepyhead
1982 * ...1 sec pause here...
1983 * I slept well
1984 *
1985 * ...e.g. on the first blocking operation inside the Fiber (<tt>sleep(1)</tt>),
1986 * the control is yielded to the outside code (main fiber), and <em>at the end
1987 * of that execution</em>, the scheduler takes care of properly resuming all the
1988 * blocked fibers.
1989 *
1990 * Note that the behavior described above is how the method is <em>expected</em>
1991 * to behave, actual behavior is up to the current scheduler's implementation of
1992 * Fiber::SchedulerInterface#fiber method. Ruby doesn't enforce this method to
1993 * behave in any particular way.
1994 *
1995 * If the scheduler is not set, the method raises
1996 * <tt>RuntimeError (No scheduler is available!)</tt>.
1997 *
1998 */
1999static VALUE
2000rb_fiber_s_schedule(int argc, VALUE *argv, VALUE obj)
2001{
2002 return rb_fiber_s_schedule_kw(argc, argv, rb_keyword_given_p());
2003}
2004
2005/*
2006 * call-seq:
2007 * Fiber.scheduler -> obj or nil
2008 *
2009 * Returns the Fiber scheduler, that was last set for the current thread with Fiber.set_scheduler.
2010 * Returns +nil+ if no scheduler is set (which is the default), and non-blocking fibers'
2011 # behavior is the same as blocking.
2012 * (see "Non-blocking fibers" section in class docs for details about the scheduler concept).
2013 *
2014 */
2015static VALUE
2016rb_fiber_s_scheduler(VALUE klass)
2017{
2018 return rb_fiber_scheduler_get();
2019}
2020
2021/*
2022 * call-seq:
2023 * Fiber.current_scheduler -> obj or nil
2024 *
2025 * Returns the Fiber scheduler, that was last set for the current thread with Fiber.set_scheduler
2026 * if and only if the current fiber is non-blocking.
2027 *
2028 */
2029static VALUE
2030rb_fiber_current_scheduler(VALUE klass)
2031{
2033}
2034
2035/*
2036 * call-seq:
2037 * Fiber.set_scheduler(scheduler) -> scheduler
2038 *
2039 * Sets the Fiber scheduler for the current thread. If the scheduler is set, non-blocking
2040 * fibers (created by Fiber.new with <tt>blocking: false</tt>, or by Fiber.schedule)
2041 * call that scheduler's hook methods on potentially blocking operations, and the current
2042 * thread will call scheduler's +close+ method on finalization (allowing the scheduler to
2043 * properly manage all non-finished fibers).
2044 *
2045 * +scheduler+ can be an object of any class corresponding to Fiber::SchedulerInterface. Its
2046 * implementation is up to the user.
2047 *
2048 * See also the "Non-blocking fibers" section in class docs.
2049 *
2050 */
2051static VALUE
2052rb_fiber_set_scheduler(VALUE klass, VALUE scheduler)
2053{
2054 return rb_fiber_scheduler_set(scheduler);
2055}
2056
2057NORETURN(static void rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt, VALUE err));
2058
2059void
2060rb_fiber_start(rb_fiber_t *fiber)
2061{
2062 rb_thread_t * volatile th = fiber->cont.saved_ec.thread_ptr;
2063
2064 rb_proc_t *proc;
2065 enum ruby_tag_type state;
2066 int need_interrupt = TRUE;
2067
2068 VM_ASSERT(th->ec == GET_EC());
2069 VM_ASSERT(FIBER_RESUMED_P(fiber));
2070
2071 if (fiber->blocking) {
2072 th->blocking += 1;
2073 }
2074
2075 EC_PUSH_TAG(th->ec);
2076 if ((state = EC_EXEC_TAG()) == TAG_NONE) {
2077 rb_context_t *cont = &VAR_FROM_MEMORY(fiber)->cont;
2078 int argc;
2079 const VALUE *argv, args = cont->value;
2080 GetProcPtr(fiber->first_proc, proc);
2081 argv = (argc = cont->argc) > 1 ? RARRAY_CONST_PTR(args) : &args;
2082 cont->value = Qnil;
2083 th->ec->errinfo = Qnil;
2084 th->ec->root_lep = rb_vm_proc_local_ep(fiber->first_proc);
2085 th->ec->root_svar = Qfalse;
2086
2087 EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
2088 cont->value = rb_vm_invoke_proc(th->ec, proc, argc, argv, cont->kw_splat, VM_BLOCK_HANDLER_NONE);
2089 }
2090 EC_POP_TAG();
2091
2092 VALUE err = Qfalse;
2093 if (state) {
2094 err = th->ec->errinfo;
2095 VM_ASSERT(FIBER_RESUMED_P(fiber));
2096
2097 if (state == TAG_RAISE) {
2098 // noop...
2099 }
2100 else if (state == TAG_FATAL) {
2101 rb_threadptr_pending_interrupt_enque(th, err);
2102 }
2103 else {
2104 err = rb_vm_make_jump_tag_but_local_jump(state, err);
2105 }
2106 need_interrupt = TRUE;
2107 }
2108
2109 rb_fiber_terminate(fiber, need_interrupt, err);
2110}
2111
2112static rb_fiber_t *
2113root_fiber_alloc(rb_thread_t *th)
2114{
2115 VALUE fiber_value = fiber_alloc(rb_cFiber);
2116 rb_fiber_t *fiber = th->ec->fiber_ptr;
2117
2118 VM_ASSERT(DATA_PTR(fiber_value) == NULL);
2119 VM_ASSERT(fiber->cont.type == FIBER_CONTEXT);
2120 VM_ASSERT(fiber->status == FIBER_RESUMED);
2121
2122 th->root_fiber = fiber;
2123 DATA_PTR(fiber_value) = fiber;
2124 fiber->cont.self = fiber_value;
2125
2126 coroutine_initialize_main(&fiber->context);
2127
2128 return fiber;
2129}
2130
2131void
2132rb_threadptr_root_fiber_setup(rb_thread_t *th)
2133{
2134 rb_fiber_t *fiber = ruby_mimmalloc(sizeof(rb_fiber_t));
2135 if (!fiber) {
2136 rb_bug("%s", strerror(errno)); /* ... is it possible to call rb_bug here? */
2137 }
2138 MEMZERO(fiber, rb_fiber_t, 1);
2139 fiber->cont.type = FIBER_CONTEXT;
2140 fiber->cont.saved_ec.fiber_ptr = fiber;
2141 fiber->cont.saved_ec.thread_ptr = th;
2142 fiber->blocking = 1;
2143 fiber_status_set(fiber, FIBER_RESUMED); /* skip CREATED */
2144 th->ec = &fiber->cont.saved_ec;
2145 // This skips mjit_cont_new for the initial thread because mjit_enabled is always false
2146 // at this point. mjit_init calls rb_fiber_init_mjit_cont again for this root_fiber.
2147 rb_fiber_init_mjit_cont(fiber);
2148}
2149
2150void
2151rb_threadptr_root_fiber_release(rb_thread_t *th)
2152{
2153 if (th->root_fiber) {
2154 /* ignore. A root fiber object will free th->ec */
2155 }
2156 else {
2157 rb_execution_context_t *ec = GET_EC();
2158
2159 VM_ASSERT(th->ec->fiber_ptr->cont.type == FIBER_CONTEXT);
2160 VM_ASSERT(th->ec->fiber_ptr->cont.self == 0);
2161
2162 if (th->ec == ec) {
2163 rb_ractor_set_current_ec(th->ractor, NULL);
2164 }
2165 fiber_free(th->ec->fiber_ptr);
2166 th->ec = NULL;
2167 }
2168}
2169
2170void
2171rb_threadptr_root_fiber_terminate(rb_thread_t *th)
2172{
2173 rb_fiber_t *fiber = th->ec->fiber_ptr;
2174
2175 fiber->status = FIBER_TERMINATED;
2176
2177 // The vm_stack is `alloca`ed on the thread stack, so it's gone too:
2178 rb_ec_clear_vm_stack(th->ec);
2179}
2180
2181static inline rb_fiber_t*
2182fiber_current(void)
2183{
2184 rb_execution_context_t *ec = GET_EC();
2185 if (ec->fiber_ptr->cont.self == 0) {
2186 root_fiber_alloc(rb_ec_thread_ptr(ec));
2187 }
2188 return ec->fiber_ptr;
2189}
2190
2191static inline rb_fiber_t*
2192return_fiber(bool terminate)
2193{
2194 rb_fiber_t *fiber = fiber_current();
2195 rb_fiber_t *prev = fiber->prev;
2196
2197 if (prev) {
2198 fiber->prev = NULL;
2199 prev->resuming_fiber = NULL;
2200 return prev;
2201 }
2202 else {
2203 if (!terminate) {
2204 rb_raise(rb_eFiberError, "attempt to yield on a not resumed fiber");
2205 }
2206
2207 rb_thread_t *th = GET_THREAD();
2208 rb_fiber_t *root_fiber = th->root_fiber;
2209
2210 VM_ASSERT(root_fiber != NULL);
2211
2212 // search resuming fiber
2213 for (fiber = root_fiber; fiber->resuming_fiber; fiber = fiber->resuming_fiber) {
2214 }
2215
2216 return fiber;
2217 }
2218}
2219
2220VALUE
2222{
2223 return fiber_current()->cont.self;
2224}
2225
2226// Prepare to execute next_fiber on the given thread.
2227static inline void
2228fiber_store(rb_fiber_t *next_fiber, rb_thread_t *th)
2229{
2230 rb_fiber_t *fiber;
2231
2232 if (th->ec->fiber_ptr != NULL) {
2233 fiber = th->ec->fiber_ptr;
2234 }
2235 else {
2236 /* create root fiber */
2237 fiber = root_fiber_alloc(th);
2238 }
2239
2240 if (FIBER_CREATED_P(next_fiber)) {
2241 fiber_prepare_stack(next_fiber);
2242 }
2243
2244 VM_ASSERT(FIBER_RESUMED_P(fiber) || FIBER_TERMINATED_P(fiber));
2245 VM_ASSERT(FIBER_RUNNABLE_P(next_fiber));
2246
2247 if (FIBER_RESUMED_P(fiber)) fiber_status_set(fiber, FIBER_SUSPENDED);
2248
2249 fiber_status_set(next_fiber, FIBER_RESUMED);
2250 fiber_setcontext(next_fiber, fiber);
2251}
2252
2253static inline VALUE
2254fiber_switch(rb_fiber_t *fiber, int argc, const VALUE *argv, int kw_splat, rb_fiber_t *resuming_fiber, bool yielding)
2255{
2256 VALUE value;
2257 rb_context_t *cont = &fiber->cont;
2258 rb_thread_t *th = GET_THREAD();
2259
2260 /* make sure the root_fiber object is available */
2261 if (th->root_fiber == NULL) root_fiber_alloc(th);
2262
2263 if (th->ec->fiber_ptr == fiber) {
2264 /* ignore fiber context switch
2265 * because destination fiber is the same as current fiber
2266 */
2267 return make_passing_arg(argc, argv);
2268 }
2269
2270 if (cont_thread_value(cont) != th->self) {
2271 rb_raise(rb_eFiberError, "fiber called across threads");
2272 }
2273
2274 if (FIBER_TERMINATED_P(fiber)) {
2275 value = rb_exc_new2(rb_eFiberError, "dead fiber called");
2276
2277 if (!FIBER_TERMINATED_P(th->ec->fiber_ptr)) {
2278 rb_exc_raise(value);
2279 VM_UNREACHABLE(fiber_switch);
2280 }
2281 else {
2282 /* th->ec->fiber_ptr is also dead => switch to root fiber */
2283 /* (this means we're being called from rb_fiber_terminate, */
2284 /* and the terminated fiber's return_fiber() is already dead) */
2285 VM_ASSERT(FIBER_SUSPENDED_P(th->root_fiber));
2286
2287 cont = &th->root_fiber->cont;
2288 cont->argc = -1;
2289 cont->value = value;
2290
2291 fiber_setcontext(th->root_fiber, th->ec->fiber_ptr);
2292
2293 VM_UNREACHABLE(fiber_switch);
2294 }
2295 }
2296
2297 VM_ASSERT(FIBER_RUNNABLE_P(fiber));
2298
2299 rb_fiber_t *current_fiber = fiber_current();
2300
2301 VM_ASSERT(!current_fiber->resuming_fiber);
2302
2303 if (resuming_fiber) {
2304 current_fiber->resuming_fiber = resuming_fiber;
2305 fiber->prev = fiber_current();
2306 fiber->yielding = 0;
2307 }
2308
2309 VM_ASSERT(!current_fiber->yielding);
2310 if (yielding) {
2311 current_fiber->yielding = 1;
2312 }
2313
2314 if (current_fiber->blocking) {
2315 th->blocking -= 1;
2316 }
2317
2318 cont->argc = argc;
2319 cont->kw_splat = kw_splat;
2320 cont->value = make_passing_arg(argc, argv);
2321
2322 fiber_store(fiber, th);
2323
2324 // We cannot free the stack until the pthread is joined:
2325#ifndef COROUTINE_PTHREAD_CONTEXT
2326 if (resuming_fiber && FIBER_TERMINATED_P(fiber)) {
2327 fiber_stack_release(fiber);
2328 }
2329#endif
2330
2331 if (fiber_current()->blocking) {
2332 th->blocking += 1;
2333 }
2334
2335 RUBY_VM_CHECK_INTS(th->ec);
2336
2337 EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
2338
2339 current_fiber = th->ec->fiber_ptr;
2340 value = current_fiber->cont.value;
2341 if (current_fiber->cont.argc == -1) rb_exc_raise(value);
2342 return value;
2343}
2344
2345VALUE
2346rb_fiber_transfer(VALUE fiber_value, int argc, const VALUE *argv)
2347{
2348 return fiber_switch(fiber_ptr(fiber_value), argc, argv, RB_NO_KEYWORDS, NULL, false);
2349}
2350
2351/*
2352 * call-seq:
2353 * fiber.blocking? -> true or false
2354 *
2355 * Returns +true+ if +fiber+ is blocking and +false+ otherwise.
2356 * Fiber is non-blocking if it was created via passing <tt>blocking: false</tt>
2357 * to Fiber.new, or via Fiber.schedule.
2358 *
2359 * Note that, even if the method returns +false+, the fiber behaves differently
2360 * only if Fiber.scheduler is set in the current thread.
2361 *
2362 * See the "Non-blocking fibers" section in class docs for details.
2363 *
2364 */
2365VALUE
2366rb_fiber_blocking_p(VALUE fiber)
2367{
2368 return RBOOL(fiber_ptr(fiber)->blocking != 0);
2369}
2370
2371/*
2372 * call-seq:
2373 * Fiber.blocking? -> false or 1
2374 *
2375 * Returns +false+ if the current fiber is non-blocking.
2376 * Fiber is non-blocking if it was created via passing <tt>blocking: false</tt>
2377 * to Fiber.new, or via Fiber.schedule.
2378 *
2379 * If the current Fiber is blocking, the method returns 1.
2380 * Future developments may allow for situations where larger integers
2381 * could be returned.
2382 *
2383 * Note that, even if the method returns +false+, Fiber behaves differently
2384 * only if Fiber.scheduler is set in the current thread.
2385 *
2386 * See the "Non-blocking fibers" section in class docs for details.
2387 *
2388 */
2389static VALUE
2390rb_fiber_s_blocking_p(VALUE klass)
2391{
2392 rb_thread_t *thread = GET_THREAD();
2393 unsigned blocking = thread->blocking;
2394
2395 if (blocking == 0)
2396 return Qfalse;
2397
2398 return INT2NUM(blocking);
2399}
2400
2401void
2402rb_fiber_close(rb_fiber_t *fiber)
2403{
2404 fiber_status_set(fiber, FIBER_TERMINATED);
2405}
2406
2407static void
2408rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt, VALUE error)
2409{
2410 VALUE value = fiber->cont.value;
2411
2412 VM_ASSERT(FIBER_RESUMED_P(fiber));
2413 rb_fiber_close(fiber);
2414
2415 fiber->cont.machine.stack = NULL;
2416 fiber->cont.machine.stack_size = 0;
2417
2418 rb_fiber_t *next_fiber = return_fiber(true);
2419
2420 if (need_interrupt) RUBY_VM_SET_INTERRUPT(&next_fiber->cont.saved_ec);
2421
2422 if (RTEST(error))
2423 fiber_switch(next_fiber, -1, &error, RB_NO_KEYWORDS, NULL, false);
2424 else
2425 fiber_switch(next_fiber, 1, &value, RB_NO_KEYWORDS, NULL, false);
2426 ruby_stop(0);
2427}
2428
2429static VALUE
2430fiber_resume_kw(rb_fiber_t *fiber, int argc, const VALUE *argv, int kw_splat)
2431{
2432 rb_fiber_t *current_fiber = fiber_current();
2433
2434 if (argc == -1 && FIBER_CREATED_P(fiber)) {
2435 rb_raise(rb_eFiberError, "cannot raise exception on unborn fiber");
2436 }
2437 else if (FIBER_TERMINATED_P(fiber)) {
2438 rb_raise(rb_eFiberError, "attempt to resume a terminated fiber");
2439 }
2440 else if (fiber == current_fiber) {
2441 rb_raise(rb_eFiberError, "attempt to resume the current fiber");
2442 }
2443 else if (fiber->prev != NULL) {
2444 rb_raise(rb_eFiberError, "attempt to resume a resumed fiber (double resume)");
2445 }
2446 else if (fiber->resuming_fiber) {
2447 rb_raise(rb_eFiberError, "attempt to resume a resuming fiber");
2448 }
2449 else if (fiber->prev == NULL &&
2450 (!fiber->yielding && fiber->status != FIBER_CREATED)) {
2451 rb_raise(rb_eFiberError, "attempt to resume a transferring fiber");
2452 }
2453
2454 VALUE result = fiber_switch(fiber, argc, argv, kw_splat, fiber, false);
2455
2456 return result;
2457}
2458
2459VALUE
2460rb_fiber_resume_kw(VALUE self, int argc, const VALUE *argv, int kw_splat)
2461{
2462 return fiber_resume_kw(fiber_ptr(self), argc, argv, kw_splat);
2463}
2464
2465VALUE
2466rb_fiber_resume(VALUE self, int argc, const VALUE *argv)
2467{
2468 return fiber_resume_kw(fiber_ptr(self), argc, argv, RB_NO_KEYWORDS);
2469}
2470
2471VALUE
2472rb_fiber_yield_kw(int argc, const VALUE *argv, int kw_splat)
2473{
2474 return fiber_switch(return_fiber(false), argc, argv, kw_splat, NULL, true);
2475}
2476
2477VALUE
2478rb_fiber_yield(int argc, const VALUE *argv)
2479{
2480 return fiber_switch(return_fiber(false), argc, argv, RB_NO_KEYWORDS, NULL, true);
2481}
2482
2483void
2484rb_fiber_reset_root_local_storage(rb_thread_t *th)
2485{
2486 if (th->root_fiber && th->root_fiber != th->ec->fiber_ptr) {
2487 th->ec->local_storage = th->root_fiber->cont.saved_ec.local_storage;
2488 }
2489}
2490
2491/*
2492 * call-seq:
2493 * fiber.alive? -> true or false
2494 *
2495 * Returns true if the fiber can still be resumed (or transferred
2496 * to). After finishing execution of the fiber block this method will
2497 * always return +false+.
2498 */
2499VALUE
2500rb_fiber_alive_p(VALUE fiber_value)
2501{
2502 return FIBER_TERMINATED_P(fiber_ptr(fiber_value)) ? Qfalse : Qtrue;
2503}
2504
2505/*
2506 * call-seq:
2507 * fiber.resume(args, ...) -> obj
2508 *
2509 * Resumes the fiber from the point at which the last Fiber.yield was
2510 * called, or starts running it if it is the first call to
2511 * #resume. Arguments passed to resume will be the value of the
2512 * Fiber.yield expression or will be passed as block parameters to
2513 * the fiber's block if this is the first #resume.
2514 *
2515 * Alternatively, when resume is called it evaluates to the arguments passed
2516 * to the next Fiber.yield statement inside the fiber's block
2517 * or to the block value if it runs to completion without any
2518 * Fiber.yield
2519 */
2520static VALUE
2521rb_fiber_m_resume(int argc, VALUE *argv, VALUE fiber)
2522{
2523 return rb_fiber_resume_kw(fiber, argc, argv, rb_keyword_given_p());
2524}
2525
2526/*
2527 * call-seq:
2528 * fiber.backtrace -> array
2529 * fiber.backtrace(start) -> array
2530 * fiber.backtrace(start, count) -> array
2531 * fiber.backtrace(start..end) -> array
2532 *
2533 * Returns the current execution stack of the fiber. +start+, +count+ and +end+ allow
2534 * to select only parts of the backtrace.
2535 *
2536 * def level3
2537 * Fiber.yield
2538 * end
2539 *
2540 * def level2
2541 * level3
2542 * end
2543 *
2544 * def level1
2545 * level2
2546 * end
2547 *
2548 * f = Fiber.new { level1 }
2549 *
2550 * # It is empty before the fiber started
2551 * f.backtrace
2552 * #=> []
2553 *
2554 * f.resume
2555 *
2556 * f.backtrace
2557 * #=> ["test.rb:2:in `yield'", "test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"]
2558 * p f.backtrace(1) # start from the item 1
2559 * #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"]
2560 * p f.backtrace(2, 2) # start from item 2, take 2
2561 * #=> ["test.rb:6:in `level2'", "test.rb:10:in `level1'"]
2562 * p f.backtrace(1..3) # take items from 1 to 3
2563 * #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'"]
2564 *
2565 * f.resume
2566 *
2567 * # It is nil after the fiber is finished
2568 * f.backtrace
2569 * #=> nil
2570 *
2571 */
2572static VALUE
2573rb_fiber_backtrace(int argc, VALUE *argv, VALUE fiber)
2574{
2575 return rb_vm_backtrace(argc, argv, &fiber_ptr(fiber)->cont.saved_ec);
2576}
2577
2578/*
2579 * call-seq:
2580 * fiber.backtrace_locations -> array
2581 * fiber.backtrace_locations(start) -> array
2582 * fiber.backtrace_locations(start, count) -> array
2583 * fiber.backtrace_locations(start..end) -> array
2584 *
2585 * Like #backtrace, but returns each line of the execution stack as a
2586 * Thread::Backtrace::Location. Accepts the same arguments as #backtrace.
2587 *
2588 * f = Fiber.new { Fiber.yield }
2589 * f.resume
2590 * loc = f.backtrace_locations.first
2591 * loc.label #=> "yield"
2592 * loc.path #=> "test.rb"
2593 * loc.lineno #=> 1
2594 *
2595 *
2596 */
2597static VALUE
2598rb_fiber_backtrace_locations(int argc, VALUE *argv, VALUE fiber)
2599{
2600 return rb_vm_backtrace_locations(argc, argv, &fiber_ptr(fiber)->cont.saved_ec);
2601}
2602
2603/*
2604 * call-seq:
2605 * fiber.transfer(args, ...) -> obj
2606 *
2607 * Transfer control to another fiber, resuming it from where it last
2608 * stopped or starting it if it was not resumed before. The calling
2609 * fiber will be suspended much like in a call to
2610 * Fiber.yield.
2611 *
2612 * The fiber which receives the transfer call treats it much like
2613 * a resume call. Arguments passed to transfer are treated like those
2614 * passed to resume.
2615 *
2616 * The two style of control passing to and from fiber (one is #resume and
2617 * Fiber::yield, another is #transfer to and from fiber) can't be freely
2618 * mixed.
2619 *
2620 * * If the Fiber's lifecycle had started with transfer, it will never
2621 * be able to yield or be resumed control passing, only
2622 * finish or transfer back. (It still can resume other fibers that
2623 * are allowed to be resumed.)
2624 * * If the Fiber's lifecycle had started with resume, it can yield
2625 * or transfer to another Fiber, but can receive control back only
2626 * the way compatible with the way it was given away: if it had
2627 * transferred, it only can be transferred back, and if it had
2628 * yielded, it only can be resumed back. After that, it again can
2629 * transfer or yield.
2630 *
2631 * If those rules are broken FiberError is raised.
2632 *
2633 * For an individual Fiber design, yield/resume is easier to use
2634 * (the Fiber just gives away control, it doesn't need to think
2635 * about who the control is given to), while transfer is more flexible
2636 * for complex cases, allowing to build arbitrary graphs of Fibers
2637 * dependent on each other.
2638 *
2639 *
2640 * Example:
2641 *
2642 * manager = nil # For local var to be visible inside worker block
2643 *
2644 * # This fiber would be started with transfer
2645 * # It can't yield, and can't be resumed
2646 * worker = Fiber.new { |work|
2647 * puts "Worker: starts"
2648 * puts "Worker: Performed #{work.inspect}, transferring back"
2649 * # Fiber.yield # this would raise FiberError: attempt to yield on a not resumed fiber
2650 * # manager.resume # this would raise FiberError: attempt to resume a resumed fiber (double resume)
2651 * manager.transfer(work.capitalize)
2652 * }
2653 *
2654 * # This fiber would be started with resume
2655 * # It can yield or transfer, and can be transferred
2656 * # back or resumed
2657 * manager = Fiber.new {
2658 * puts "Manager: starts"
2659 * puts "Manager: transferring 'something' to worker"
2660 * result = worker.transfer('something')
2661 * puts "Manager: worker returned #{result.inspect}"
2662 * # worker.resume # this would raise FiberError: attempt to resume a transferring fiber
2663 * Fiber.yield # this is OK, the fiber transferred from and to, now it can yield
2664 * puts "Manager: finished"
2665 * }
2666 *
2667 * puts "Starting the manager"
2668 * manager.resume
2669 * puts "Resuming the manager"
2670 * # manager.transfer # this would raise FiberError: attempt to transfer to a yielding fiber
2671 * manager.resume
2672 *
2673 * <em>produces</em>
2674 *
2675 * Starting the manager
2676 * Manager: starts
2677 * Manager: transferring 'something' to worker
2678 * Worker: starts
2679 * Worker: Performed "something", transferring back
2680 * Manager: worker returned "Something"
2681 * Resuming the manager
2682 * Manager: finished
2683 *
2684 */
2685static VALUE
2686rb_fiber_m_transfer(int argc, VALUE *argv, VALUE self)
2687{
2688 return rb_fiber_transfer_kw(self, argc, argv, rb_keyword_given_p());
2689}
2690
2691static VALUE
2692fiber_transfer_kw(rb_fiber_t *fiber, int argc, const VALUE *argv, int kw_splat)
2693{
2694 if (fiber->resuming_fiber) {
2695 rb_raise(rb_eFiberError, "attempt to transfer to a resuming fiber");
2696 }
2697
2698 if (fiber->yielding) {
2699 rb_raise(rb_eFiberError, "attempt to transfer to a yielding fiber");
2700 }
2701
2702 return fiber_switch(fiber, argc, argv, kw_splat, NULL, false);
2703}
2704
2705VALUE
2706rb_fiber_transfer_kw(VALUE self, int argc, const VALUE *argv, int kw_splat)
2707{
2708 return fiber_transfer_kw(fiber_ptr(self), argc, argv, kw_splat);
2709}
2710
2711/*
2712 * call-seq:
2713 * Fiber.yield(args, ...) -> obj
2714 *
2715 * Yields control back to the context that resumed the fiber, passing
2716 * along any arguments that were passed to it. The fiber will resume
2717 * processing at this point when #resume is called next.
2718 * Any arguments passed to the next #resume will be the value that
2719 * this Fiber.yield expression evaluates to.
2720 */
2721static VALUE
2722rb_fiber_s_yield(int argc, VALUE *argv, VALUE klass)
2723{
2724 return rb_fiber_yield_kw(argc, argv, rb_keyword_given_p());
2725}
2726
2727static VALUE
2728fiber_raise(rb_fiber_t *fiber, int argc, const VALUE *argv)
2729{
2730 VALUE exception = rb_make_exception(argc, argv);
2731
2732 if (fiber->resuming_fiber) {
2733 rb_raise(rb_eFiberError, "attempt to raise a resuming fiber");
2734 }
2735 else if (FIBER_SUSPENDED_P(fiber) && !fiber->yielding) {
2736 return fiber_transfer_kw(fiber, -1, &exception, RB_NO_KEYWORDS);
2737 }
2738 else {
2739 return fiber_resume_kw(fiber, -1, &exception, RB_NO_KEYWORDS);
2740 }
2741}
2742
2743VALUE
2744rb_fiber_raise(VALUE fiber, int argc, const VALUE *argv)
2745{
2746 return fiber_raise(fiber_ptr(fiber), argc, argv);
2747}
2748
2749/*
2750 * call-seq:
2751 * fiber.raise -> obj
2752 * fiber.raise(string) -> obj
2753 * fiber.raise(exception [, string [, array]]) -> obj
2754 *
2755 * Raises an exception in the fiber at the point at which the last
2756 * +Fiber.yield+ was called. If the fiber has not been started or has
2757 * already run to completion, raises +FiberError+. If the fiber is
2758 * yielding, it is resumed. If it is transferring, it is transferred into.
2759 * But if it is resuming, raises +FiberError+.
2760 *
2761 * With no arguments, raises a +RuntimeError+. With a single +String+
2762 * argument, raises a +RuntimeError+ with the string as a message. Otherwise,
2763 * the first parameter should be the name of an +Exception+ class (or an
2764 * object that returns an +Exception+ object when sent an +exception+
2765 * message). The optional second parameter sets the message associated with
2766 * the exception, and the third parameter is an array of callback information.
2767 * Exceptions are caught by the +rescue+ clause of <code>begin...end</code>
2768 * blocks.
2769 */
2770static VALUE
2771rb_fiber_m_raise(int argc, VALUE *argv, VALUE self)
2772{
2773 return rb_fiber_raise(self, argc, argv);
2774}
2775
2776/*
2777 * call-seq:
2778 * Fiber.current -> fiber
2779 *
2780 * Returns the current fiber. If you are not running in the context of
2781 * a fiber this method will return the root fiber.
2782 */
2783static VALUE
2784rb_fiber_s_current(VALUE klass)
2785{
2786 return rb_fiber_current();
2787}
2788
2789static VALUE
2790fiber_to_s(VALUE fiber_value)
2791{
2792 const rb_fiber_t *fiber = fiber_ptr(fiber_value);
2793 const rb_proc_t *proc;
2794 char status_info[0x20];
2795
2796 if (fiber->resuming_fiber) {
2797 snprintf(status_info, 0x20, " (%s by resuming)", fiber_status_name(fiber->status));
2798 }
2799 else {
2800 snprintf(status_info, 0x20, " (%s)", fiber_status_name(fiber->status));
2801 }
2802
2803 if (!rb_obj_is_proc(fiber->first_proc)) {
2804 VALUE str = rb_any_to_s(fiber_value);
2805 strlcat(status_info, ">", sizeof(status_info));
2806 rb_str_set_len(str, RSTRING_LEN(str)-1);
2807 rb_str_cat_cstr(str, status_info);
2808 return str;
2809 }
2810 GetProcPtr(fiber->first_proc, proc);
2811 return rb_block_to_s(fiber_value, &proc->block, status_info);
2812}
2813
2814#ifdef HAVE_WORKING_FORK
2815void
2816rb_fiber_atfork(rb_thread_t *th)
2817{
2818 if (th->root_fiber) {
2819 if (&th->root_fiber->cont.saved_ec != th->ec) {
2820 th->root_fiber = th->ec->fiber_ptr;
2821 }
2822 th->root_fiber->prev = 0;
2823 }
2824}
2825#endif
2826
2827#ifdef RB_EXPERIMENTAL_FIBER_POOL
2828static void
2829fiber_pool_free(void *ptr)
2830{
2831 struct fiber_pool * fiber_pool = ptr;
2832 RUBY_FREE_ENTER("fiber_pool");
2833
2834 fiber_pool_free_allocations(fiber_pool->allocations);
2836
2837 RUBY_FREE_LEAVE("fiber_pool");
2838}
2839
2840static size_t
2841fiber_pool_memsize(const void *ptr)
2842{
2843 const struct fiber_pool * fiber_pool = ptr;
2844 size_t size = sizeof(*fiber_pool);
2845
2846 size += fiber_pool->count * fiber_pool->size;
2847
2848 return size;
2849}
2850
2851static const rb_data_type_t FiberPoolDataType = {
2852 "fiber_pool",
2853 {NULL, fiber_pool_free, fiber_pool_memsize,},
2854 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
2855};
2856
2857static VALUE
2858fiber_pool_alloc(VALUE klass)
2859{
2860 struct fiber_pool * fiber_pool = RB_ALLOC(struct fiber_pool);
2861
2862 return TypedData_Wrap_Struct(klass, &FiberPoolDataType, fiber_pool);
2863}
2864
2865static VALUE
2866rb_fiber_pool_initialize(int argc, VALUE* argv, VALUE self)
2867{
2868 rb_thread_t *th = GET_THREAD();
2869 VALUE size = Qnil, count = Qnil, vm_stack_size = Qnil;
2870 struct fiber_pool * fiber_pool = NULL;
2871
2872 // Maybe these should be keyword arguments.
2873 rb_scan_args(argc, argv, "03", &size, &count, &vm_stack_size);
2874
2875 if (NIL_P(size)) {
2876 size = INT2NUM(th->vm->default_params.fiber_machine_stack_size);
2877 }
2878
2879 if (NIL_P(count)) {
2880 count = INT2NUM(128);
2881 }
2882
2883 if (NIL_P(vm_stack_size)) {
2884 vm_stack_size = INT2NUM(th->vm->default_params.fiber_vm_stack_size);
2885 }
2886
2887 TypedData_Get_Struct(self, struct fiber_pool, &FiberPoolDataType, fiber_pool);
2888
2889 fiber_pool_initialize(fiber_pool, NUM2SIZET(size), NUM2SIZET(count), NUM2SIZET(vm_stack_size));
2890
2891 return self;
2892}
2893#endif
2894
2895/*
2896 * Document-class: FiberError
2897 *
2898 * Raised when an invalid operation is attempted on a Fiber, in
2899 * particular when attempting to call/resume a dead fiber,
2900 * attempting to yield from the root fiber, or calling a fiber across
2901 * threads.
2902 *
2903 * fiber = Fiber.new{}
2904 * fiber.resume #=> nil
2905 * fiber.resume #=> FiberError: dead fiber called
2906 */
2907
2908/*
2909 * Document-class: Fiber::SchedulerInterface
2910 *
2911 * This is not an existing class, but documentation of the interface that Scheduler
2912 * object should comply to in order to be used as argument to Fiber.scheduler and handle non-blocking
2913 * fibers. See also the "Non-blocking fibers" section in Fiber class docs for explanations
2914 * of some concepts.
2915 *
2916 * Scheduler's behavior and usage are expected to be as follows:
2917 *
2918 * * When the execution in the non-blocking Fiber reaches some blocking operation (like
2919 * sleep, wait for a process, or a non-ready I/O), it calls some of the scheduler's
2920 * hook methods, listed below.
2921 * * Scheduler somehow registers what the current fiber is waiting on, and yields control
2922 * to other fibers with Fiber.yield (so the fiber would be suspended while expecting its
2923 * wait to end, and other fibers in the same thread can perform)
2924 * * At the end of the current thread execution, the scheduler's method #close is called
2925 * * The scheduler runs into a wait loop, checking all the blocked fibers (which it has
2926 * registered on hook calls) and resuming them when the awaited resource is ready
2927 * (e.g. I/O ready or sleep time elapsed).
2928 *
2929 * A typical implementation would probably rely for this closing loop on a gem like
2930 * EventMachine[https://github.com/eventmachine/eventmachine] or
2931 * Async[https://github.com/socketry/async].
2932 *
2933 * This way concurrent execution will be achieved transparently for every
2934 * individual Fiber's code.
2935 *
2936 * Hook methods are:
2937 *
2938 * * #io_wait, #io_read, and #io_write
2939 * * #process_wait
2940 * * #kernel_sleep
2941 * * #timeout_after
2942 * * #address_resolve
2943 * * #block and #unblock
2944 * * (the list is expanded as Ruby developers make more methods having non-blocking calls)
2945 *
2946 * When not specified otherwise, the hook implementations are mandatory: if they are not
2947 * implemented, the methods trying to call hook will fail. To provide backward compatibility,
2948 * in the future hooks will be optional (if they are not implemented, due to the scheduler
2949 * being created for the older Ruby version, the code which needs this hook will not fail,
2950 * and will just behave in a blocking fashion).
2951 *
2952 * It is also strongly recommended that the scheduler implements the #fiber method, which is
2953 * delegated to by Fiber.schedule.
2954 *
2955 * Sample _toy_ implementation of the scheduler can be found in Ruby's code, in
2956 * <tt>test/fiber/scheduler.rb</tt>
2957 *
2958 */
2959
2960#if 0 /* for RDoc */
2961/*
2962 *
2963 * Document-method: Fiber::SchedulerInterface#close
2964 *
2965 * Called when the current thread exits. The scheduler is expected to implement this
2966 * method in order to allow all waiting fibers to finalize their execution.
2967 *
2968 * The suggested pattern is to implement the main event loop in the #close method.
2969 *
2970 */
2971static VALUE
2972rb_fiber_scheduler_interface_close(VALUE self)
2973{
2974}
2975
2976/*
2977 * Document-method: SchedulerInterface#process_wait
2978 * call-seq: process_wait(pid, flags)
2979 *
2980 * Invoked by Process::Status.wait in order to wait for a specified process.
2981 * See that method description for arguments description.
2982 *
2983 * Suggested minimal implementation:
2984 *
2985 * Thread.new do
2986 * Process::Status.wait(pid, flags)
2987 * end.value
2988 *
2989 * This hook is optional: if it is not present in the current scheduler,
2990 * Process::Status.wait will behave as a blocking method.
2991 *
2992 * Expected to return a Process::Status instance.
2993 */
2994static VALUE
2995rb_fiber_scheduler_interface_process_wait(VALUE self)
2996{
2997}
2998
2999/*
3000 * Document-method: SchedulerInterface#io_wait
3001 * call-seq: io_wait(io, events, timeout)
3002 *
3003 * Invoked by IO#wait, IO#wait_readable, IO#wait_writable to ask whether the
3004 * specified descriptor is ready for specified events within
3005 * the specified +timeout+.
3006 *
3007 * +events+ is a bit mask of <tt>IO::READABLE</tt>, <tt>IO::WRITABLE</tt>, and
3008 * <tt>IO::PRIORITY</tt>.
3009 *
3010 * Suggested implementation should register which Fiber is waiting for which
3011 * resources and immediately calling Fiber.yield to pass control to other
3012 * fibers. Then, in the #close method, the scheduler might dispatch all the
3013 * I/O resources to fibers waiting for it.
3014 *
3015 * Expected to return the subset of events that are ready immediately.
3016 *
3017 */
3018static VALUE
3019rb_fiber_scheduler_interface_io_wait(VALUE self)
3020{
3021}
3022
3023/*
3024 * Document-method: SchedulerInterface#io_read
3025 * call-seq: io_read(io, buffer, length) -> read length or -errno
3026 *
3027 * Invoked by IO#read to read +length+ bytes from +io+ into a specified
3028 * +buffer+ (see IO::Buffer).
3029 *
3030 * The +length+ argument is the "minimum length to be read".
3031 * If the IO buffer size is 8KiB, but the +length+ is +1024+ (1KiB), up to
3032 * 8KiB might be read, but at least 1KiB will be.
3033 * Generally, the only case where less data than +length+ will be read is if
3034 * there is an error reading the data.
3035 *
3036 * Specifying a +length+ of 0 is valid and means try reading at least once
3037 * and return any available data.
3038 *
3039 * Suggested implementation should try to read from +io+ in a non-blocking
3040 * manner and call #io_wait if the +io+ is not ready (which will yield control
3041 * to other fibers).
3042 *
3043 * See IO::Buffer for an interface available to return data.
3044 *
3045 * Expected to return number of bytes read, or, in case of an error, <tt>-errno</tt>
3046 * (negated number corresponding to system's error code).
3047 *
3048 * The method should be considered _experimental_.
3049 */
3050static VALUE
3051rb_fiber_scheduler_interface_io_read(VALUE self)
3052{
3053}
3054
3055/*
3056 * Document-method: SchedulerInterface#io_write
3057 * call-seq: io_write(io, buffer, length) -> written length or -errno
3058 *
3059 * Invoked by IO#write to write +length+ bytes to +io+ from
3060 * from a specified +buffer+ (see IO::Buffer).
3061 *
3062 * The +length+ argument is the "(minimum) length to be written".
3063 * If the IO buffer size is 8KiB, but the +length+ specified is 1024 (1KiB),
3064 * at most 8KiB will be written, but at least 1KiB will be.
3065 * Generally, the only case where less data than +length+ will be written is if
3066 * there is an error writing the data.
3067 *
3068 * Specifying a +length+ of 0 is valid and means try writing at least once,
3069 * as much data as possible.
3070 *
3071 * Suggested implementation should try to write to +io+ in a non-blocking
3072 * manner and call #io_wait if the +io+ is not ready (which will yield control
3073 * to other fibers).
3074 *
3075 * See IO::Buffer for an interface available to get data from buffer efficiently.
3076 *
3077 * Expected to return number of bytes written, or, in case of an error, <tt>-errno</tt>
3078 * (negated number corresponding to system's error code).
3079 *
3080 * The method should be considered _experimental_.
3081 */
3082static VALUE
3083rb_fiber_scheduler_interface_io_write(VALUE self)
3084{
3085}
3086
3087/*
3088 * Document-method: SchedulerInterface#kernel_sleep
3089 * call-seq: kernel_sleep(duration = nil)
3090 *
3091 * Invoked by Kernel#sleep and Mutex#sleep and is expected to provide
3092 * an implementation of sleeping in a non-blocking way. Implementation might
3093 * register the current fiber in some list of "which fiber wait until what
3094 * moment", call Fiber.yield to pass control, and then in #close resume
3095 * the fibers whose wait period has elapsed.
3096 *
3097 */
3098static VALUE
3099rb_fiber_scheduler_interface_kernel_sleep(VALUE self)
3100{
3101}
3102
3103/*
3104 * Document-method: SchedulerInterface#address_resolve
3105 * call-seq: address_resolve(hostname) -> array_of_strings or nil
3106 *
3107 * Invoked by any method that performs a non-reverse DNS lookup. The most
3108 * notable method is Addrinfo.getaddrinfo, but there are many other.
3109 *
3110 * The method is expected to return an array of strings corresponding to ip
3111 * addresses the +hostname+ is resolved to, or +nil+ if it can not be resolved.
3112 *
3113 * Fairly exhaustive list of all possible call-sites:
3114 *
3115 * - Addrinfo.getaddrinfo
3116 * - Addrinfo.tcp
3117 * - Addrinfo.udp
3118 * - Addrinfo.ip
3119 * - Addrinfo.new
3120 * - Addrinfo.marshal_load
3121 * - SOCKSSocket.new
3122 * - TCPServer.new
3123 * - TCPSocket.new
3124 * - IPSocket.getaddress
3125 * - TCPSocket.gethostbyname
3126 * - UDPSocket#connect
3127 * - UDPSocket#bind
3128 * - UDPSocket#send
3129 * - Socket.getaddrinfo
3130 * - Socket.gethostbyname
3131 * - Socket.pack_sockaddr_in
3132 * - Socket.sockaddr_in
3133 * - Socket.unpack_sockaddr_in
3134 */
3135static VALUE
3136rb_fiber_scheduler_interface_address_resolve(VALUE self)
3137{
3138}
3139
3140/*
3141 * Document-method: SchedulerInterface#timeout_after
3142 * call-seq: timeout_after(duration, exception_class, *exception_arguments, &block) -> result of block
3143 *
3144 * Invoked by Timeout.timeout to execute the given +block+ within the given
3145 * +duration+. It can also be invoked directly by the scheduler or user code.
3146 *
3147 * Attempt to limit the execution time of a given +block+ to the given
3148 * +duration+ if possible. When a non-blocking operation causes the +block+'s
3149 * execution time to exceed the specified +duration+, that non-blocking
3150 * operation should be interrupted by raising the specified +exception_class+
3151 * constructed with the given +exception_arguments+.
3152 *
3153 * General execution timeouts are often considered risky. This implementation
3154 * will only interrupt non-blocking operations. This is by design because it's
3155 * expected that non-blocking operations can fail for a variety of
3156 * unpredictable reasons, so applications should already be robust in handling
3157 * these conditions and by implication timeouts.
3158 *
3159 * However, as a result of this design, if the +block+ does not invoke any
3160 * non-blocking operations, it will be impossible to interrupt it. If you
3161 * desire to provide predictable points for timeouts, consider adding
3162 * +sleep(0)+.
3163 *
3164 * If the block is executed successfully, its result will be returned.
3165 *
3166 * The exception will typically be raised using Fiber#raise.
3167 */
3168static VALUE
3169rb_fiber_scheduler_interface_timeout_after(VALUE self)
3170{
3171}
3172
3173/*
3174 * Document-method: SchedulerInterface#block
3175 * call-seq: block(blocker, timeout = nil)
3176 *
3177 * Invoked by methods like Thread.join, and by Mutex, to signify that current
3178 * Fiber is blocked until further notice (e.g. #unblock) or until +timeout+ has
3179 * elapsed.
3180 *
3181 * +blocker+ is what we are waiting on, informational only (for debugging and
3182 * logging). There are no guarantee about its value.
3183 *
3184 * Expected to return boolean, specifying whether the blocking operation was
3185 * successful or not.
3186 */
3187static VALUE
3188rb_fiber_scheduler_interface_block(VALUE self)
3189{
3190}
3191
3192/*
3193 * Document-method: SchedulerInterface#unblock
3194 * call-seq: unblock(blocker, fiber)
3195 *
3196 * Invoked to wake up Fiber previously blocked with #block (for example, Mutex#lock
3197 * calls #block and Mutex#unlock calls #unblock). The scheduler should use
3198 * the +fiber+ parameter to understand which fiber is unblocked.
3199 *
3200 * +blocker+ is what was awaited for, but it is informational only (for debugging
3201 * and logging), and it is not guaranteed to be the same value as the +blocker+ for
3202 * #block.
3203 *
3204 */
3205static VALUE
3206rb_fiber_scheduler_interface_unblock(VALUE self)
3207{
3208}
3209
3210/*
3211 * Document-method: SchedulerInterface#fiber
3212 * call-seq: fiber(&block)
3213 *
3214 * Implementation of the Fiber.schedule. The method is <em>expected</em> to immediately
3215 * run the given block of code in a separate non-blocking fiber, and to return that Fiber.
3216 *
3217 * Minimal suggested implementation is:
3218 *
3219 * def fiber(&block)
3220 * fiber = Fiber.new(blocking: false, &block)
3221 * fiber.resume
3222 * fiber
3223 * end
3224 */
3225static VALUE
3226rb_fiber_scheduler_interface_fiber(VALUE self)
3227{
3228}
3229#endif
3230
3231void
3232Init_Cont(void)
3233{
3234 rb_thread_t *th = GET_THREAD();
3235 size_t vm_stack_size = th->vm->default_params.fiber_vm_stack_size;
3236 size_t machine_stack_size = th->vm->default_params.fiber_machine_stack_size;
3237 size_t stack_size = machine_stack_size + vm_stack_size;
3238
3239#ifdef _WIN32
3240 SYSTEM_INFO info;
3241 GetSystemInfo(&info);
3242 pagesize = info.dwPageSize;
3243#else /* not WIN32 */
3244 pagesize = sysconf(_SC_PAGESIZE);
3245#endif
3246 SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
3247
3248 fiber_pool_initialize(&shared_fiber_pool, stack_size, FIBER_POOL_INITIAL_SIZE, vm_stack_size);
3249
3250 fiber_initialize_keywords[0] = rb_intern_const("blocking");
3251 fiber_initialize_keywords[1] = rb_intern_const("pool");
3252
3253 const char *fiber_shared_fiber_pool_free_stacks = getenv("RUBY_SHARED_FIBER_POOL_FREE_STACKS");
3254 if (fiber_shared_fiber_pool_free_stacks) {
3255 shared_fiber_pool.free_stacks = atoi(fiber_shared_fiber_pool_free_stacks);
3256 }
3257
3258 rb_cFiber = rb_define_class("Fiber", rb_cObject);
3259 rb_define_alloc_func(rb_cFiber, fiber_alloc);
3260 rb_eFiberError = rb_define_class("FiberError", rb_eStandardError);
3261 rb_define_singleton_method(rb_cFiber, "yield", rb_fiber_s_yield, -1);
3262 rb_define_singleton_method(rb_cFiber, "current", rb_fiber_s_current, 0);
3263 rb_define_method(rb_cFiber, "initialize", rb_fiber_initialize, -1);
3264 rb_define_method(rb_cFiber, "blocking?", rb_fiber_blocking_p, 0);
3265 rb_define_method(rb_cFiber, "resume", rb_fiber_m_resume, -1);
3266 rb_define_method(rb_cFiber, "raise", rb_fiber_m_raise, -1);
3267 rb_define_method(rb_cFiber, "backtrace", rb_fiber_backtrace, -1);
3268 rb_define_method(rb_cFiber, "backtrace_locations", rb_fiber_backtrace_locations, -1);
3269 rb_define_method(rb_cFiber, "to_s", fiber_to_s, 0);
3270 rb_define_alias(rb_cFiber, "inspect", "to_s");
3271 rb_define_method(rb_cFiber, "transfer", rb_fiber_m_transfer, -1);
3272 rb_define_method(rb_cFiber, "alive?", rb_fiber_alive_p, 0);
3273
3274 rb_define_singleton_method(rb_cFiber, "blocking?", rb_fiber_s_blocking_p, 0);
3275 rb_define_singleton_method(rb_cFiber, "scheduler", rb_fiber_s_scheduler, 0);
3276 rb_define_singleton_method(rb_cFiber, "set_scheduler", rb_fiber_set_scheduler, 1);
3277 rb_define_singleton_method(rb_cFiber, "current_scheduler", rb_fiber_current_scheduler, 0);
3278
3279 rb_define_singleton_method(rb_cFiber, "schedule", rb_fiber_s_schedule, -1);
3280
3281#if 0 /* for RDoc */
3282 rb_cFiberScheduler = rb_define_class_under(rb_cFiber, "SchedulerInterface", rb_cObject);
3283 rb_define_method(rb_cFiberScheduler, "close", rb_fiber_scheduler_interface_close, 0);
3284 rb_define_method(rb_cFiberScheduler, "process_wait", rb_fiber_scheduler_interface_process_wait, 0);
3285 rb_define_method(rb_cFiberScheduler, "io_wait", rb_fiber_scheduler_interface_io_wait, 0);
3286 rb_define_method(rb_cFiberScheduler, "io_read", rb_fiber_scheduler_interface_io_read, 0);
3287 rb_define_method(rb_cFiberScheduler, "io_write", rb_fiber_scheduler_interface_io_write, 0);
3288 rb_define_method(rb_cFiberScheduler, "kernel_sleep", rb_fiber_scheduler_interface_kernel_sleep, 0);
3289 rb_define_method(rb_cFiberScheduler, "address_resolve", rb_fiber_scheduler_interface_address_resolve, 0);
3290 rb_define_method(rb_cFiberScheduler, "timeout_after", rb_fiber_scheduler_interface_timeout_after, 0);
3291 rb_define_method(rb_cFiberScheduler, "block", rb_fiber_scheduler_interface_block, 0);
3292 rb_define_method(rb_cFiberScheduler, "unblock", rb_fiber_scheduler_interface_unblock, 0);
3293 rb_define_method(rb_cFiberScheduler, "fiber", rb_fiber_scheduler_interface_fiber, 0);
3294#endif
3295
3296#ifdef RB_EXPERIMENTAL_FIBER_POOL
3297 rb_cFiberPool = rb_define_class("Pool", rb_cFiber);
3298 rb_define_alloc_func(rb_cFiberPool, fiber_pool_alloc);
3299 rb_define_method(rb_cFiberPool, "initialize", rb_fiber_pool_initialize, -1);
3300#endif
3301
3302 rb_provide("fiber.so");
3303}
3304
3305RUBY_SYMBOL_EXPORT_BEGIN
3306
3307void
3308ruby_Init_Continuation_body(void)
3309{
3310 rb_cContinuation = rb_define_class("Continuation", rb_cObject);
3311 rb_undef_alloc_func(rb_cContinuation);
3312 rb_undef_method(CLASS_OF(rb_cContinuation), "new");
3313 rb_define_method(rb_cContinuation, "call", rb_cont_call, -1);
3314 rb_define_method(rb_cContinuation, "[]", rb_cont_call, -1);
3315 rb_define_global_function("callcc", rb_callcc, 0);
3316}
3317
3318RUBY_SYMBOL_EXPORT_END
#define rb_define_singleton_method(klass, mid, func, arity)
Defines klass.mid.
Definition: cxxanyargs.hpp:685
#define RUBY_EVENT_FIBER_SWITCH
Encountered a Fiber#yield.
Definition: event.h:55
VALUE rb_define_class(const char *name, VALUE super)
Defines a top-level class.
Definition: class.c:837
VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super)
Defines a class under the namespace of outer.
Definition: class.c:869
void rb_define_alias(VALUE klass, const char *name1, const char *name2)
Defines an alias of a method.
Definition: class.c:2116
void rb_undef_method(VALUE klass, const char *name)
Defines an undef of a method.
Definition: class.c:1938
int rb_scan_args_kw(int kw_flag, int argc, const VALUE *argv, const char *fmt,...)
Identical to rb_scan_args(), except it also accepts kw_splat.
Definition: class.c:2419
int rb_scan_args(int argc, const VALUE *argv, const char *fmt,...)
Retrieves argument from argc and argv to given VALUE references according to the format string.
Definition: class.c:2406
void rb_define_method(VALUE klass, const char *name, VALUE(*func)(ANYARGS), int argc)
Defines a method.
Definition: class.c:1914
int rb_keyword_given_p(void)
Determines if the current method is given a keyword argument.
Definition: eval.c:863
int rb_get_kwargs(VALUE keyword_hash, const ID *table, int required, int optional, VALUE *values)
Keyword argument deconstructor.
Definition: class.c:2195
void rb_define_global_function(const char *name, VALUE(*func)(ANYARGS), int argc)
Defines a global function.
Definition: class.c:2110
#define REALLOC_N
Old name of RB_REALLOC_N.
Definition: memory.h:397
#define Qundef
Old name of RUBY_Qundef.
#define UNREACHABLE_RETURN
Old name of RBIMPL_UNREACHABLE_RETURN.
Definition: assume.h:31
#define ZALLOC
Old name of RB_ZALLOC.
Definition: memory.h:396
#define CLASS_OF
Old name of rb_class_of.
Definition: globals.h:203
#define rb_ary_new4
Old name of rb_ary_new_from_values.
Definition: array.h:653
#define rb_exc_new2
Old name of rb_exc_new_cstr.
Definition: error.h:37
#define ALLOC_N
Old name of RB_ALLOC_N.
Definition: memory.h:393
#define Qtrue
Old name of RUBY_Qtrue.
#define INT2NUM
Old name of RB_INT2NUM.
Definition: int.h:43
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define NIL_P
Old name of RB_NIL_P.
#define NUM2SIZET
Old name of RB_NUM2SIZE.
Definition: size_t.h:61
void ruby_stop(int ex)
Calls ruby_cleanup() and exits the process.
Definition: eval.c:289
void rb_raise(VALUE exc, const char *fmt,...)
Exception entry point.
Definition: error.c:3021
void rb_exc_raise(VALUE mesg)
Raises an exception in the current thread.
Definition: eval.c:671
void rb_syserr_fail(int e, const char *mesg)
Raises appropriate exception that represents a C errno.
Definition: error.c:3133
void rb_bug(const char *fmt,...)
Interpreter panic switch.
Definition: error.c:802
VALUE rb_funcall_passing_block_kw(VALUE recv, ID mid, int argc, const VALUE *argv, int kw_splat)
Identical to rb_funcallv_passing_block(), except you can specify how to handle the last element of th...
Definition: vm_eval.c:1172
VALUE rb_ary_tmp_new(long capa)
Allocates a "temporary" array.
Definition: array.c:847
VALUE rb_fiber_transfer_kw(VALUE fiber, int argc, const VALUE *argv, int kw_splat)
Identical to rb_fiber_transfer(), except you can specify how to handle the last element of the given ...
Definition: cont.c:2706
VALUE rb_fiber_raise(VALUE fiber, int argc, const VALUE *argv)
Identical to rb_fiber_resume() but instead of resuming normal execution of the passed fiber,...
Definition: cont.c:2744
VALUE rb_fiber_current(void)
Queries the fiber which is calling this function.
Definition: cont.c:2221
VALUE rb_fiber_yield_kw(int argc, const VALUE *argv, int kw_splat)
Identical to rb_fiber_yield(), except you can specify how to handle the last element of the given arr...
Definition: cont.c:2472
VALUE rb_fiber_transfer(VALUE fiber, int argc, const VALUE *argv)
Transfers control to another fiber, resuming it from where it last stopped or starting it if it was n...
Definition: cont.c:2346
VALUE rb_fiber_resume_kw(VALUE fiber, int argc, const VALUE *argv, int kw_splat)
Identical to rb_fiber_resume(), except you can specify how to handle the last element of the given ar...
Definition: cont.c:2460
VALUE rb_fiber_alive_p(VALUE fiber)
Queries the liveness of the passed fiber.
Definition: cont.c:2500
VALUE rb_fiber_new(rb_block_call_func_t func, VALUE callback_obj)
Creates a Fiber instance from a C-backended block.
Definition: cont.c:1936
VALUE rb_obj_is_fiber(VALUE obj)
Queries if an object is a fiber.
Definition: cont.c:1106
VALUE rb_fiber_yield(int argc, const VALUE *argv)
Yields the control back to the point where the current fiber was resumed.
Definition: cont.c:2478
VALUE rb_fiber_resume(VALUE fiber, int argc, const VALUE *argv)
Resumes the execution of the passed fiber, either from the point at which the last rb_fiber_yield() w...
Definition: cont.c:2466
VALUE rb_make_exception(int argc, const VALUE *argv)
Constructs an exception object from the list of arguments, in a manner similar to Ruby's raise.
Definition: eval.c:817
void rb_gc_mark(VALUE obj)
Marks an object.
Definition: gc.c:6774
void rb_gc_mark_movable(VALUE obj)
Maybe this is the only function provided for C extensions to control the pinning of objects,...
Definition: gc.c:6768
VALUE rb_gc_location(VALUE obj)
Finds a new "location" of an object.
Definition: gc.c:9753
void rb_gc_mark_locations(const VALUE *start, const VALUE *end)
Marks objects between the two pointers.
Definition: gc.c:6208
void rb_provide(const char *feature)
Declares that the given feature is already provided by someone else.
Definition: load.c:638
VALUE rb_block_proc(void)
Constructs a Proc object from implicitly passed components.
Definition: proc.c:848
VALUE rb_proc_new(rb_block_call_func_t func, VALUE callback_arg)
This is an rb_iterate() + rb_block_proc() combo.
Definition: proc.c:3241
VALUE rb_obj_is_proc(VALUE recv)
Queries if the given object is a proc.
Definition: proc.c:175
void rb_str_set_len(VALUE str, long len)
Overwrites the length of the string.
Definition: string.c:3039
VALUE rb_str_cat_cstr(VALUE dst, const char *src)
Identical to rb_str_cat(), except it assumes the passed pointer is a pointer to a C string.
Definition: string.c:3171
void rb_undef_alloc_func(VALUE klass)
Deletes the allocator function of a class.
Definition: vm_method.c:1117
void rb_define_alloc_func(VALUE klass, rb_alloc_func_t func)
Sets the allocator function of a class.
static ID rb_intern_const(const char *str)
This is a "tiny optimisation" over rb_intern().
Definition: symbol.h:276
ID rb_intern(const char *name)
Finds or creates a symbol of the given name.
Definition: symbol.c:782
VALUE rb_yield(VALUE val)
Yields the block.
Definition: vm_eval.c:1357
#define MEMCPY(p1, p2, type, n)
Handy macro to call memcpy.
Definition: memory.h:366
#define ALLOCA_N(type, n)
Definition: memory.h:286
#define RB_ALLOC(type)
Shorthand of RB_ALLOC_N with n=1.
Definition: memory.h:207
#define MEMZERO(p, type, n)
Handy macro to erase a region of memory.
Definition: memory.h:354
#define RARRAY_CONST_PTR
Just another name of rb_array_const_ptr.
Definition: rarray.h:69
#define DATA_PTR(obj)
Convenient getter macro.
Definition: rdata.h:71
static long RSTRING_LEN(VALUE str)
Queries the length of the string.
Definition: rstring.h:483
#define TypedData_Get_Struct(obj, type, data_type, sval)
Obtains a C struct from inside of a wrapper Ruby object.
Definition: rtypeddata.h:507
#define TypedData_Wrap_Struct(klass, data_type, sval)
Converts sval, a pointer to your struct, into a Ruby object.
Definition: rtypeddata.h:441
#define TypedData_Make_Struct(klass, type, data_type, sval)
Identical to TypedData_Wrap_Struct, except it allocates a new data region internally instead of takin...
Definition: rtypeddata.h:489
#define RB_NO_KEYWORDS
Do not pass keywords.
Definition: scan_args.h:69
Scheduler APIs.
VALUE rb_fiber_scheduler_current(void)
Identical to rb_fiber_scheduler_get(), except it also returns RUBY_Qnil in case of a blocking fiber.
Definition: scheduler.c:126
VALUE rb_fiber_scheduler_set(VALUE scheduler)
Destructively assigns the passed scheduler to that of the current thread that is calling this functio...
Definition: scheduler.c:91
VALUE rb_fiber_scheduler_get(void)
Queries the current scheduler of the current thread that is calling this function.
Definition: scheduler.c:60
#define RTEST
This is an old name of RB_TEST.
This is the struct that holds necessary info for a struct.
void ruby_xfree(void *ptr)
Deallocates a storage instance.
Definition: gc.c:11772