
NONA (code selector description translator)

Vladimir Makarov, vmakarov@users.sourceforge.net Apr 5, 2001

This document describes NONA (a code selector description into code for solving code selection and possibly

other back-end tasks).

Contents

1 Introduction 1

2 Code selector description language 1

2.1 Layout of code selector description . 2

2.2 Declarations . 2

2.3 Rules . 3

3 Generated code 4

3.1 C Interface objects . 4

3.2 C++ Interface objects . 6

3.3 Implementation file macros . 7

3.4 Storage management macros . 9

4 NONA Usage 9

5 Appendix 1 - Syntax of code selector description language 11

1 Introduction

NONA is a translator of a code selector description (CS) into code for solving code selection and possibly other
back-end tasks. The code selector description is mainly intended for describing code selection task solution,
i.e. for determining by machine-independent way a transformation of a low level internal representation of
source program into machine instruction level internal representation. But the code selector description can
be used also to locate machine dependent code for solving other back-end task, e.g. register allocation. To
describe code selector description a special language is used.

An code selector description describes mainly tree patterns of low level internal representation with associ-
ated costs and semantic actions. NONA generates the tree matcher which builds cover of low level internal
representation by the tree patterns with minimal cost on the first bottom up pass and fulfills actions asso-
ciated with the choiced tree patterns on the second bottom up pass. Usually the actions contain code to
output assembler instruction.

2. Code selector description language 2

Analogous approach for solving code selection task is used by modern generator generators such as BEG,
Twig, Burg and Iburg. The tree matcher generated by NONA uses algorithm similar to one of BEG and
Iburg, i.e. the algorithm is based on dynamic programming during fulfilling code selection.

Although the algorithm used by BURG and based on dynamic programming during tree pattern matcher
generation time is considerably more fast, it is not acceptable for us. Its main drawback which is to need
usage of less powerful code selector description results in necessity of usage of more machine-dependent low
level internal representation. For example, the special internal representation node types for 8-bits, 16-bits
constants besides 32-bits constants would be needed. Also the algorithm used by BURG is considerably
more complex.

Tree pattern matchers generated by NONA also can work with directed acyclic graphs besides trees. This
feature is useful when target machine instruction is generated from the internal representation which is result
of some optimizations such as common sub-expression elimination.

2 Code selector description language

An code selector description describes mainly tree patterns of low level internal representation with associated
usage constraints, costs and semantic actions. The tree pattern may contains terminal representing the low
level internal representation node. Nonterminals serves to designate the tree patterns. Each terminal or
nonterminal may have attribute which is evaluated in actions.

2.1 Layout of code selector description

Code selector description structure has the following layout which is similar to one of YACC file.

DECLARATIONS

%%

RULES

%%

ADDITIONAL C/C++ CODE

The ‘%%’ serves to separate the sections of description. All sections are optional. The first ‘%%’ starts
section of rules and is obligatory even if the section is empty, the second ‘%%’ may be absent if section of
additional C/C++ code is absent too.

The section of declarations contains declarations of terminals by names of constants which represent modes
of the low level internal representation nodes. The section also may contain declarations of commutativeness
of some terminals. Type and union declarations can be used to declare types of terminal and nonterminal
attributes. And finally the section may contain subsections of code on C/C++.

The next section contains rules. Each rule describes tree pattern, nonterminal designating the pattern, the
pattern cost, its usage constraint, and associated action. The rule list can be empty. In this case the code
selector description is used to locate machine dependent code and generated code of the tree pattern matcher
can not be used.

The additional C/C++ code can contain any C/C++ code you want to use. Often functions which are not
generated by the translator but are needed to work with code selector description go here. This code without
changes is placed at the end of file generated by the translator.

2. Code selector description language 3

2.2 Declarations

The section of declarations may contain the following construction:

%term <TYPE> IDENTIFIER ...

All terminals must be defined in constructions of such kind (or in construction ‘%commutative’). The same
identifier can be defined repeatedly. The identifier is a name of constant which represents mode of the
low level internal representation node. If the user needs usage of attributes of different types, the terminal
attribute type can be given in this construction. The union declaration can be used for this.

%union {

any thing that can go inside a ‘union’ in C/C++

}

The last such construction in the declarations section specifies the entire collection of possible types for
attribute values. For example:

%union {

IR_node_t node;

int number;

}

This means that the two alternative types are ‘IR node t’ and ‘int’. They are given by names ‘node’ and
‘number’. These names are used in the type and commutativeness declarations to instruct type of attribute
for a terminal or nonterminal. The type declarations has the following form:

%type <TYPE> IDENTIFIER ...

The construction can be used when union declaration is present. Here ‘TYPE’ is a name of type given in
union declaration. If the type of terminal or nonterminal is not given its type is believed to be ‘CS TYPE’
(see next section). The identifier is one of terminal or nonterminal. The construction

%commutative <TYPE> TERMINAL_IDENTIFIER ...

describes terminal and commutativeness of operator represented by the terminal besides optional instruction
for the terminal attribute type. For example, if the terminal ‘plus’ is described as commutative then pattern
‘plus (register, constant)’ simultaneously designates pattern ‘plus (constant, register)’. There may be also
the following constructions in the declaration section

%local {

C/C++ DECLARATIONS

}

%import {

C/C++ DECLARATION

}

and

2. Code selector description language 4

%export {

C/C++ DECLARATION

}

which contain any C/C++ declarations (types, variables, macros, and so on) used in sections. The local
C/C++ declarations are inserted at the begin of generated implementation file (see code selector description
interface) but after include-directive of interface file. C/C++ declarations which start with ‘%import’ are
inserted at the begin of generated interface file. For example, such C/C++ code may redefine some internal
definitions, e.g. macro defining type of attributes. C/C++ declarations which start with ‘%export’ are
inserted at the end of generated interface file. For example, such C/C++ code may contain definitions of
of external variables and functions which refer to definitions generated by NONA. All C/C++ declarations
are placed in the same order as in the section of declarations.

2.3 Rules

The section of declarations is followed by section of rules . A rule is described the following construction

nonterminal : pattern cost %if constraint action

The rule connects tree pattern with nonterminal. Several tree patterns can be connected to a nonterminal.
Nonterminal is given by its identifier. The rest constructions cost, constraint with keyword ‘%if’, and actions
are optional. Cost is a integer expression on C/C++ in brackets ‘[’ and ‘]’. If the cost is omited in the rule,
then its value is believed to be zero. The cost value has to be non-negative. Constraint which is given as
a boolean expression on C/C++ in brackets ‘[’ and ‘]’ defines a condition of the tree pattern usage. In the
case of absent constraint its value is believed to be nonzero. The tree pattern will be never in a minimal
cost cover if constraint value is equal to zero during testing the tree pattern as a candidate on inclusion into
minimal cost cover. For example, the following rule with constraint describes Am29k instruction CONST

register : integer_constant [1]

%if [IR_value ($1) >=0 & & IR_value ($1) < 256]

The actions can contain any statements on C/C++ in figure brackets ‘{’ and ‘}’. Constructions ‘$$’ and
‘$n’ (n is a integer number here) denote attributes of correspondingly nonterminal before ‘:’ and terminal
or nonterminal in the pattern with order number equal to ‘n’. The order numbers start with 1. These
constructions may be present in the cost, the constraint and the action. But it should be remembered that
definition of the moment of the cost and the constraint evaluation is quite difficult. Moreover there is not
guaranty that given cost and constraint will be evaluated. Therefore side effects should be not in the cost
and in the constraint, and usage attributes of nonterminals should be not in the cost and in the constraint.
The cost and the constraint may be fulfilled on the first bottom up pass. It is known only that the cost
is fulfilled after evaluation of constraint give nonzero result. The action of the tree pattern which is a part
of result minimal cost cover is fulfilled on the second bottom up pass. Tree pattern is given by one of the
following forms:

TERMINAL (PATTERN , ...)

TERMINAL

NONTERMINAL

3. Generated code 5

For example, the following pattern describes Am29050 instruction DMSM

double_addition (twin, double_multiplication (twin,

accumulator0))

It should be remembered that each terminal must have fixed arity in all patterns. It means that usage of
the following patterns in a code selector description will be erroneous.

integer_addition (register, register)

integer_addition (register)

Full YACC syntax of internal representation description language is placed in Appendix 1.

3 Generated code

A specification as described in the previous section is translated by code selector description translator
(NONA) into code selector description (CS) interface and implementation files having the same names as
one of specification file and correspondingly suffixes ‘.h’ and ‘.c’ for C or ‘.cpp’ for C++ (see option ‘-c++’).

3.1 C Interface objects

C interface file of CS consists of the following definitions of generated type and functions:

1. There is constant with nonterminal name and prefix ‘CSNT ’ for each nonterminal. ‘CSNT’ is abbre-
viation of code selector description nonterminal. The constants are defined as macros (with the aid of
C preprocessor directive ‘#define’). The constants are used as parameter of functions ‘CS it is axiom’
and ‘CS traverse cover’ (see below).

2. Macro ‘CS NODE’ must represent type of node of low level internal representation. This macro can
be redefined (only in a C declaration section which starts with ‘%import’). By default this macro is
defined as follows:

#define CS_NODE struct IR_node_struct *

3. Macro ‘CS TYPE’ defines type of terminal and nonterminal attributes. This macro can not be redefined
if the corresponding code selector description has a construction ‘%union’ which already describes
terminal and nonterminal attribute types because in this case the default macro definition is absent.
By default this macro is defined as follows:

#define CS_TYPE CS_node

4. Type ‘CS node’ is defined as follows:

typedef CS_NODE CS_node;

5. Type ‘CS cover’ describes a minimal cost cover. The values of this types are created by function
‘CS find cover’ and deleted by function ‘CS delete cover’.

6. Function

‘CS_cover CS_find_cover (CS_node node)’

3. Generated code 6

makes the first bottom up pass on directed acyclic graph given by its node and finds a minimal cost
cover for each nonterminal. The minimal cost cover is returned. If error occurs during the pass
then macro ‘CS ERROR’ (see below) is evaluated. For example, the cause of error may be meeting
undeclared terminal code. During building cover, each directed acyclic graph (DAG) node is visited
only once.

7. Function

‘int CS_it_is_axiom (CS_cover cover, int nonterminal)’

returns 1 if there is a minimal cost cover for given nonterminal in given cover, 0 otherwise.

8. Function

‘CS_TYPE CS_traverse_cover (CS_cover cover, int nonterminal)’

makes the second bottom up, left to right pass and fulfills actions corresponding a minimal cost cover
for given nonterminal in cover found by call of function ‘CS find cover’. A minimal cost cover for
given nonterminal must be in given cover before the function call. This condition can be checked
by function ‘CS it is axiom’. The function returns attribute of given nonterminal after fulfilling the
actions. Remember that action (and attribute evaluation) associated with tree pattern is fulfilled only
once for each occurrence of the tree pattern in given cover of a directed acyclic graph.

9. Function

‘void CS_delete_cover (CS_cover cover)’

frees memory allocated to ‘cover’ which was to be created by call of function ‘CS find cover’. Of course
this cover can not be used in function ‘CS traverse cover’ after that. The memory is freed in the reverse
order therefore allocation macros (see below) can use stack strategy of the memory allocation.

10. Function

‘void CS_start (void)’

is to be called before any work with code selector description. The function initiates code selector
description storage management (see below).

11. Function

‘void CS_finish (void)’

is to be last. The function finishes code selector description storage management. Therefore only
function ‘CS start’ can be called after this function call.

3.2 C++ Interface objects

C++ interface file (see option -c++) of CS consists of the following definitions of generated type and
functions:

1. There is constant with nonterminal name and prefix ‘CSNT ’ for each nonterminal. ‘CSNT’ is abbre-
viation of code selector description nonterminal. The constants are defined as macros (with the aid of
C preprocessor directive ‘#define’). The constants are used as parameter of functions ‘CS it is axiom’
and ‘CS traverse cover’ (see below).

3. Generated code 7

2. Macro ‘CS NODE’ must represent type of node of low level internal representation. This macro can
be redefined (only in a C declaration section which starts with ‘%import’). By default this macro is
defined as follows:

#define CS_NODE struct IR_node_struct *

3. Macro ‘CS TYPE’ defines type of terminal and nonterminal attributes. This macro can not be redefined
if the corresponding code selector description has a construction ‘%union’ which already describes
terminal and nonterminal attribute types because in this case the default macro definition is absent.
By default this macro is defined as follows:

#define CS_TYPE CS_node

4. Type ‘CS node’ is defined as follows:

typedef CS_NODE CS_node;

5. Type ‘CS cover’ describes a minimal cost cover. It is pointer objects of a class. The class has not
public constructors and desctructors. The class objects can be created only by function ‘CS find cover’
and can be deleted by function ‘CS traverse cover’. This class has the following friend functions:

(a) Function

‘CS_cover CS_find_cover (CS_node node)’

makes the first bottom up pass on directed acyclic graph given by its node and finds a minimal
cost cover for each nonterminal. The minimal cost cover is returned. If error occurs during the
pass then macro ‘CS ERROR’ (see below) is evaluated. For example, the cause of error may be
meeting undeclared terminal code. During building cover, each directed acyclic graph (DAG)
node is visited only once.

(b) Function

‘void CS_start (void)’

is to be called before any work with code selector description. The function initiates code selector
description storage management (see below).

(c) Function

‘void CS_finish (void)’

is to be last. The function finishes code selector description storage management. Therefore only
function ‘CS start’ can be called after this function call.

This class has also the following class functions:

(a) Function

‘int CS_it_is_axiom (int nonterminal)’

returns 1 if there is a minimal cost cover for given nonterminal in given cover, 0 otherwise.

(b) Function

‘CS_TYPE CS_traverse_cover (int nonterminal)’

3. Generated code 8

makes the second bottom up, left to right pass and fulfills actions corresponding a minimal cost
cover for given nonterminal in cover found by call of function ‘CS find cover’. A minimal cost
cover for given nonterminal must be in given cover before the function call. This condition can
be checked by function ‘CS it is axiom’. The function returns attribute of given nonterminal
after fulfilling the actions. Remember that action (and attribute evaluation) associated with tree
pattern is fulfilled only once for each occurrence of the tree pattern in given cover of a directed
acyclic graph.

(c) Function

‘void CS_delete_cover (void)’

frees memory allocated to the cover which was to be created by call of function ‘CS find cover’. Of
course the function ‘CS traverse cover’ can not be used after that (because the object is removed).
The memory is freed in the reverse order therefore allocation macros (see below) can use stack
strategy of the memory allocation.

3.3 Implementation file macros

CS implementation file uses the following macros generated by NONA. These macros can be redefined (in
any C/C++ declaration section).

1. Macro ‘CS OPERATION(node)’ must return value defined by a constant which represents mode of
the low level internal representation node (see description of construction ‘%term’).

2. Macros

‘CS_OPERAND_1_OF_1(node)’,

‘CS_OPERAND_1_OF_2(node)’,

‘CS_OPERAND_2_OF_2(node)’, and so on.

These macros define the structure of the low level internal representation for which is needed to build
minimal cost cover. The structure must be a directed acyclic graph (DAG).

Macro of kind ‘CS OPERAND k OF n’ defines k-th arc from the DAG node given as the macro
argument which has ‘n’ such arcs. Let us consider tree pattern

‘integer_plus (register, const8)’

To access to children of node represented by terminal ‘integer plus’ the macros ‘CS OPERAND 1 OF 2’
and ‘CS OPERAND 2 OF 2’ will be used.

3. Macros

‘CS_STATE(node)’,

‘CS_SET_STATE(node, state)’

define access to the a DAG node field. The field is used by tree pattern matchers. The type of this
field must be any pointer type. Macro ‘CS STATE’ has one argument of type ‘CS node’. Macro
‘CS SET STATE’ has two arguments of types correspondingly ‘CS node’ and ‘void *’.

3. Generated code 9

4. Macro ‘CS ATTRIBUTE(node)’ must return value of type ‘CS TYPE’. This value is attribute of the
terminal corresponding to given node of low level internal representation.

This macro for given terminal may be evaluated several times because the terminal attribute can be in
cost or constraint constructions. The value of the macro for the terminal must be l-value (variable in
other words) when construction ‘%union’ is present and given terminal is declared with type because
in this case the operation ‘.’ of C/C++ language is applyed to the macro value in order to get access
to the terminal attribute.

5. Macro ‘CS ERROR(str)’ is a reaction on fixing an error by tree pattern matcher. The macro argument
is tree pattern matcher message about the error.

By default these macros are defined as follows:

#define CS_OPERATION(node) IR_NODE_MODE (node)

#define CS_OPERAND_1_OF_1(node) IR_operand (node)

#define CS_OPERAND_1_OF_2(node) IR_operand_1 (node)

#define CS_OPERAND_2_OF_2(node) IR_operand_2 (node)

#define CS_OPERAND_1_OF_3(node) IR_operand_1 (node)

#define CS_OPERAND_2_OF_3(node) IR_operand_2 (node)

#define CS_OPERAND_3_OF_3(node) IR_operand_3 (node)

...

#define CS_STATE(node) IR_state (node)

#define CS_SET_STATE(node, state) IR_set_state (node, state)

#define CS_ATTRIBUTE(node) (node)

#define CS_ERROR(str) fprintf (stderr, "%s\012", str)

3.4 Storage management macros

NONA completely automatically generates macros of storage management for the cover. Usually, the user
does not have to care about it. The predefined storage management uses C standard functions for global
storage with free lists. The user can create own storage manager by redefinition of one or more the following
macros and placing them in a C declaration section. But the user should know that all functions generated
by NONA believe that the storage can not change its place after the allocation.

1. Macros ‘CS START ALLOC()’, ‘CS FINISH ALLOC()’ are evaluated in functions correspondingly
‘CS start’ and ‘CS finish’ and are to be used to start and finish work with the storage manager.

2. Macros ‘CS ALLOC(ptr, size, ptr type)’, ‘CS FREE(ptr, size)’ allocate and free storage whose size is
given as the second parameter. The first parameter serves to return pointer to memory being allocated
or to point to memory being freed.

By default these macros are defined as follows:

#define CS_START_ALLOC()

#define CS_FINISH_ALLOC()

#define CS_ALLOC(ptr, size, ptr_type) \

((ptr) = (ptr_type) malloc (size))

#define CS_FREE(ptr, size) free (ptr)

4. NONA Usage 10

4 NONA Usage

NONA(1) User Manuals NONA(1)

NAME

nona - code selector description translator

SYNOPSIS

nona [-c++ -v -debug -export -pprefix] specification-file

DESCRIPTION

Command nona translates code selector description (CS) which is

described in specification file into code for solving code selection

(tree matcher) and possibly other back-end tasks. The specification

file must have suffix ‘.nona’ determined by CS builds cover of low

level internal representation (which must be a directed acyclic graph)

by the tree patterns with minimal cost on the first bottom up pass and

fulfills actions associated with the choiced tree patterns on the sec-

ond bottom up pass.

Generated code consists of interface and implementation files having

the same names as one of specification file and correspondingly suf-

fixes ‘.h’ and ‘.c’ (C code) or ‘.cpp’ (C++ code).

Full documentation of OKA is in OKA User’s manual.

OPTIONS

The options which are known for NONA are:

-c++ NONA generates C++ code instead of C code (default).

-v NONA outputs statistic information to standard output stream.

-debug NONA outputs debugging information during execution of function

‘CS_find_cover’ and ‘CS_traverse_cover’ (see generated code).

-export

NONA generates macros defining identifiers of terminals as inte-

ger constants and inclusion of their in the interface file.

Usually the user himself declares the identifiers in a C decla-

rations section.

-pprefix

NONA generates names starting with prefix ‘prefix’ instead of

‘CS’.

FILES

5. Appendix 1 - Syntax of code selector description language 11

file.nona

NONA specification file

file.c

generated C implementation file

file.cpp

generated C++ implementation file

file.h

generated interface file

There are no any temporary files used by NONA.

ENVIRONMENT

There are no environment variables which affect NONA behavior.

DIAGNOSTICS

NONA diagnostics is self-explanatory.

AUTHOR

Vladimir N. Makarov, vmakarov@users.sourceforge.net

SEE ALSO

msta(1), shilka(1), sprut(1), oka(1). NONA manual.

BUGS

Please, report bugs to cocom-bugs@lists.sourceforge.net.

COCOM 5 Apr 2001 NONA(1)

5 Appendix 1 - Syntax of code selector description language

YACC notation is used to describe full syntax of code selector description language.

%token PERCENTS LEFT_PARENTHESIS RIGHT_PARENTHESIS

LEFT_ANGLE_BRACKET RIGHT_ANGLE_BRACKET COMMA COLON SEMICOLON

IDENTIFIER CODE_INSERTION EXPRESSION ADDITIONAL_C_CODE

%token COMMUTATIVE LOCAL IMPORT EXPORT UNION TERM TYPE IF

%start description

%%

description : declaration_part PERCENTS rule_list ADDITIONAL_C_CODE

;

declaration_part :

| declaration_part commutative_declaration

| declaration_part term_declaration

5. Appendix 1 - Syntax of code selector description language 12

| declaration_part type_declaration

| declaration_part LOCAL CODE_INSERTION

| declaration_part IMPORT CODE_INSERTION

| declaration_part EXPORT CODE_INSERTION

| declaration_part UNION CODE_INSERTION

;

term_declaration : TERM optional_type

| term_declaration term_identifier

;

commutative_declaration : COMMUTATIVE optional_type

| commutative_declaration term_identifier

;

type_declaration : TYPE type

| type_declaration term_or_nonterm_identifier

;

optional_type :

| type

;

type : LEFT_ANGLE_BRACKET IDENTIFIER RIGHT_ANGLE_BRACKET

;

rule_list :

| rule_list rule

;

rule : nonterm_identifier COLON pattern

optional_cost optional_constraint optional_action SEMICOLON

;

optional_action :

| CODE_INSERTION

;

optional_constraint :

| IF EXPRESSION

;

optional_cost :

| EXPRESSION

;

nonterm_identifier : IDENTIFIER

;

term_identifier : IDENTIFIER

;

5. Appendix 1 - Syntax of code selector description language 13

term_or_nonterm_identifier : IDENTIFIER

;

pattern : IDENTIFIER LEFT_PARENTHESIS pattern_list RIGHT_PARENTHESIS

| term_or_nonterm_identifier

;

pattern_list : pattern

| pattern_list COMMA pattern

;

	Introduction
	Code selector description language
	Layout of code selector description
	Declarations
	Rules

	Generated code
	C Interface objects
	C++ Interface objects
	Implementation file macros
	Storage management macros

	NONA Usage
	Appendix 1 - Syntax of code selector description language

