The Programming Language DINO

Vladimir Makarov, vmakarov@users.sourceforge.net. Edited by Serhei Makarov.

This document describes the programming language DINO.

Contents

1 Introduction

2 Syntax

3 Vocabulary and Representation

4 Declarations and Scope Rules

4.1 Variable Declarations
4.2 External Declarations
4.3 Functions, Classes, Extensions,

5 Expressions

5.1 Typesand Values
5.2 Designators oL L e
5.3 Calls . . . o . o
5.4 Operators
5.4.1 Logical operators L Lo
5.4.2 Bitoperators L e
5.4.3 Comparison operatorso
5.4.4 Arithmetic operators L
5.4.5 Miscellaneous operators

6 Executive statements

6.1 Empty statement oo
6.2 Block-statement Lo
6.3 Assignment statements Lo Lo Lo
6.4 Call-statement
6.5 If-statement
6.6 For-statement

Jan 25, 2006

........ 21

CONTENTS

6.7 Foreach-statement

6.8 Break- and continue-statement L

6.9 Return-statement L L e e

6.10 Throw-statement

6.11 Try-block e

6.12 Wait-statement

7 Program

8 Predeclared identifiers
8.1 Predeclared variables
8.1.1 Arguments and environmento

8.1.2 Version

8.1.3 Threads L e
8.1.4 Exceptions e e
8.1.5 Files L o e
8.1.6 Miscellaneous variables
8.2 Predeclared classes L
8.2.1 File . . . o L e
8.2.2 Exception classes L
8.2.3 Earley parser classes L e
8.3 Predeclared functions
8.3.1 Mathematical functions L
8.3.2 Pattern matching functions oL L oo
8.3.3 File functions
8.3.4 Time functions L e
8.3.5 Functions for access to process information
8.3.6 Miscellaneous functions L e

9 Appendix A. Syntax of Dino

10 Appendix B. Implementation

History

Apr 29, 2001.

Documentation of all objects corresponding to Earley’s
parser was added.

26
27
27
27
28
29

29

31
31
31
31
31
32
32
33
33
33
33
36
42
42
42
47
54
55
o6

58

61

CONTENTS

May 05, 2001. Semantics of private declarations are changed slightly.
Earlier, they were accessible only by a separate
identifier. Now they are accessible inside their
scope. In other words, they can be accessible by ‘.’
or ‘->’ inside the scope.

Added profile option -p.
Added IEEE standard floating point arithmetic.
Declaration block friends.

Jun 22, 2001. Function rcount is added.

Jul 19, 2001. Functions getf and fgetf have been added.

Jun 23, 2001. Function gmatch is added, rcount is removed.

Jun 25, 2001. Operators char, int, float are added.

Sep 25, 2001. Vector conversion with format. New function rev.

Del, ins, and insv now return the vector.

Oct 27, 2001. New predefined variable version. Additional
parameter for getf and fgetf.

Oct 31, 2001. Added special method destroy.

Nov 22, 2001. New functions sput, sputln, sprint, sprintln added.

Dec 13, 2001. New variables nil_anode and error_anode and new
function set_cost.

Mar 15, 2002. Function parse may return nil.

Mar 18, 2002. New function set_lookahead.

Apr 30, 2002. Calling destroy by finishing the program.

Dec 8, 2002. Equality of instance, classes and functions means
the same context.

Dec 14, 2003. Making table key is immutable in assignment.

Jan 29, 2004. New exception invfmt. New functions putf, fputf, sputf.

Jan 4, 2006. New function trans. Make function rev returning a new

array.

Jan 15, 2006. Removing depricated -> and dereference ’*’ operations

1. Introduction 4

Jan 16, 2006. New swap operation.

Jan 25, 2006. Add sync statement in wait-stmt

1 Introduction

DINO is a high level dynamic-typed scripting language. DINO is designed taking such design principles as
simplicity, uniformity, and expressiveness into account. Dino is oriented on the same domain of applications
as the famous scripting languages Perl, TCL, and Python. Most programmers know the C programming
language. Therefore Dino aims to look like C where it is possible. Dino is an object oriented language
with garbage collection. Dino has possibilities of parallelism description and exception handling. Dino is an
extensible language with the possibility of dynamic loading of libraries written on other languages. The high
level structures of Dino are

e heterogenous extensible vectors
e extensible associative tables with the ability to delete table elements

e objects

Originally, Dino was used in the russian graphics company ANIMATEK for description of the movement
of dinosaurs in a project. It has been considerably redesigned and was implemented with the aid of the

COCOM tool set.

This document is not intended for use as a programmer’s tutorial. It is a concise description of the language
DINO and can be used as a programmer’s reference.

2 Syntax

An extended Backus-Naur Formalism (EBNF) is used to describe the syntax of Dino. Alternatives are
separated by |. Brackets [and] denote optionality of the enclosed expression, and braces { and } denote
repetition (zero or more times). Parentheses (and) are used for grouping a EBNF construction containing
alternatives inside it as one construction.

Terminal symbols denoting a class of terminals (e.g. identifier) consist of only upper-case letters (e.g.
IDENT). The remaining terminal symbols either start with a lower-case letter (e.g. keyword else), or are
denoted by ASCII character sequences in double quotes (e.g. "=="). Non-terminal symbols start with an
upper-case letter and contain at least one lower-case letter (e.g. FormalParameters).

3 Vocabulary and Representation

Wherever it is possible, we use also EBNF for description of lexical symbols through ASCII set characters.
Otherwise, we will use natural language sentences in < and >. Lexical symbols are identifiers, numbers,
character constants, strings, operators, delimiters, and comments. White characters (blanks and line breaks)
must not occur within the symbols (except in comments, and blanks in strings). White characters are
ignored unless they are essential to separate two consecutive lexical symbols. Upper- and lower-case letters
are considered to be distinct.

3. Vocabulary and Representation 5

1. An identifier is a sequence of letters and digits starting with a letter. The underline is believed to be
a valid letter in an identifier.

Ident = Letter {Letter | Digit}

Letter = "a" | npn | nen | ngn I ngn | nfn | Ilgll I "h" | nyn | Iljll
| ngn | nyn | "m" | npn I ngn | Ilpll | Ilqll I Hypn | ngn | ngn
| " | nygn | n" | Nyt I llyll | ngn
| npn | nugn | ngn | npn I ngn | ngn | ng" I ngn | nyn | nyn
| ngn | ngn | nyn | nNn I "o | npn | nQu I "R" | ngn | nn
| nygn | nyn | nyyn | nyn I nyn | ngn
| u_n

OctalDigit = no" | nqn | non | ngn | ngn | ngn I ngn | nn

Digit = OctalDigit | "8" | "9"

Examples:

line 1line2 next_line NextLine

2. Numbers are (unsigned) decimal integer or floating point numbers. Numbers start with a digit. Floating
point numbers are distinguished by the presence of decimal point . or an exponent in the number.

Number = Integer | FloatingPointNumber
Integer = Digit {Digit}

FloatingPointNumber = Digit {Digit} "." { Digit } [Exponent]
| Digit {Digit} [Exponent]

Exponent = ("e" | "E") ["+" | "-"] Digit { Digit }
Examples:

10

100.

le2
100.0E+0

3. A Dino character constant denotes an ASCII character. The following sequences starting with the
backslash have a special meaning inside a Dino character constant:
e \a - ASCII character alert
e \b - ASCII character backspace
e \f - ASCII character form feed
e \n - ASCII character new line
e \r - ASCII character carriage return
e \t - ASCII character horizontal tab
\v - ASCII character vertical tab

\code - ASCII character with given octal code

Vocabulary and Representation

e \char - ASCII character char for all remaining characters

To denote a single quote mark use the sequence \’. The double quote mark can be represented either
by \" or simply by ". To represent a backslash inside the character constant, use two consecutive
ASCII backslashes.

Character = "’" Char "’"
Char = <any ASCII character except for the single quote °’,
backslash \, or line break>
| SimpleEscapeSeq
| OctalEscapeSeq

SimpleEscapeSeq = <one of \’ \" \\ \a \b \f \n \r \t \v>

OctalEscapeSeq = "\" OctalDigit [OctalDigit [OctalDigit]]

Examples:

)aJ J\J))\\) 1\12) yno

4. A string is sequence of ASCII characters enclosed in double quotes. There are the same sequences of
ASCII characters with special meaning as in a character constant. To denote a double quote mark use
sequence \". The single quote mark can be represented either by \’ or simply by ’. To represent a

backslash inside the character constant, use two consecutive ASCII backslashes.
String = ’"’ {Char} ’"’

Examples:

"Don’t worry\n"

"This is Dino"

. The remaining essential symbols are called operators and delimiters. Operators are used for forming
expressions, delimiters are used for forming syntax constructions. There is a special kind of operators
and delimiters which look like identifiers containing only lower-case letters. They are reserved identifiers
(keywords). Keywords can not be used in the place of an identifier.

OperatorOrDelimeter = non | non | [| " | " I | " | ng | "y & " | n-~n
I [[p—T] | np=n | [[pe—] | "==n | ngn | nsn
I ng="n | ny=n | nggn I nysn | LSSl I "e"
I ngn | n_mn | n/u I Ny I ll%ll | wyn I ngn
I n_n | n~n | ngn I u(ll I n)u | u[u I Il]ll
I ll{ll | u}n | non I ll,ll I u;u | n=n
I Nyg=N | ||/=|| | ll%=ll I nyp=n | no_=n
I ne=" | ngg=" | nys="n | nsys=n | ng =n
| n~_n | " |=|| | Nypgn I n__n | L | ng=>"n
| Keyword
Keyword = "break" | "catch" | "char" | "class" | "continue"
| "else" | "ext" | "extern"
| "final" | "float" | "for" | "friend" | "func"
| "hide" | "hideblock" | "if" | "in" | "int"
[" (e] [s AN " s " [[
| "new" | "nil" | "public" | "private" | "return
| "table" I "thread" | "throw" | "try" | "type"
[" [[" s4n
| "var" | "vector" | "wait

4. Declarations and Scope Rules 7

6. Comments are considered analogous to blanks on the syntax level of the program. There are two types
of comments. The first type is an arbitrary character sequence starting with /* and finishing with */.
The second type of comment starts with // and finishes with the first line break or with the end of
file.

Comment = "/*" <arbitrary char. sequence not containing pair */> "x/"
| "//" <arbitrary char. sequence finishing on line break>

4 Declarations and Scope Rules

A Dino program is block structured. Each block introduces a new identifier scope. A block consists of
executive statements and declarations and may contain nested blocks. Each identifier used in a program
should be declared in a declaration in the program, unless it is a predeclared identifier.

Block = "{" StmtList "}"
StmtList = { Stmt }

Stmt = ExecutiveStmt
| Declaration

When declaring an identifier, you also specify certain permanent properties of a declaration, such as whether
it is a variable, a function, or a class. The identifier is then used to refer to the associated declaration (more
correctly with the declaration instance).

Declaration VarDeclarations

AccessClause

|

| ExternDeclarations

| FuncClassExtDeclaration
|

IncludeDeclaration

The scope of a declaration is textually from the start (not from the point of declaration!) to the end of the
block to which the declaration belongs and hence to which the declaration is local. It excludes the scopes of
declarations with the same identifier which are in nested blocks. In a block, a maximum of one declaration
of the same identifier is possible.

It is important to understand the notion of instantiation of the declaration. This notion reflects program
execution, not the static structure of program. An instance exists in a context. Actually, a context is an
execution environment consisting of the covering block instances and/or class objects. A new instance of
the block is created when execution of the block starts. There may be more than one instance of the same
block, e.g. when the block is a function or class body (in this case the block instance is a class object), or
when the block is executed on different threads (parallel execution branches) or when there is a reference
to a block instance after its execution. When a new instance of the block starts, all the block declarations
are instantiated too. For a variable declaration, it means a new instance of variable is created in the given
context. For a function or class declaration, it means that the function or class is bound to the given context.

Example: The following program illustrates a case when a reference to a block instance exists after its
execution. The program outputs the result 8.

4. Declarations and Scope Rules 8

var i, f;

for (i = 0; i < 10; i++)
if (A% 4 ==0)
{
var j = i;
func r () {return j;}
f =r;
}
putln (£ O));

Declaration is always either private or public. Private declaration is accessible only inside the declaration
scope or inside functions or classes which are declared as friend in the declaration block. A public declaration
instance is always accessible when association (see below) of the identifier is successful. By default, [instances
of] declarations in a class block are public. In all other places, the (instances of) declarations are private by
default. The following constructions are used for declaring an identifier to be public, private, or as friend:

AccessClause = (public | private | friend) AccessList ";"

AccessList = IDENT { "," IDENT }
Examples:

public paraml, param2;
private call_count;

friend class2;
Association of an identifier and the corresponding declaration instance is performed by the following rules:

e The corresponding declaration instance is searched for a separate identifier occurrence in the instance
of the block in which the identifier occurs. If the latter failed, the declaration is searched in the covering
block instance of the current block instance, and so on.

e Declaration instance for an identifier in the following construction
designator.identifier

is searched in the block instance (e.g. in a class object) whose value is in the designator. If the
designator is a class object, its context is a class object, and the search failed, the search is continued
in the covering class object etc. The exception accessop occurs if the declaration is not found with
such identifier, or the declaration is private and the construction is not in the declaration scope and
not inside a friend of the declaration scope.

The following identifiers are predeclared on the top level (in the implicit block covering the whole program).
They are described in more detail later in the report.

anode argv atan2
chdir chgmod chomod chumod
clock close cmpv context

cos curr_thread

4. Declarations and Scope Rules

del
eltype
except
fatime
fgetln
flush
fprintln
fscanln
fun

gc
geteun
getln
gsub

ins
invcalls
invops
keys

log
main_thread
mkdir
nil_anode
open
parser
print
rand

rev

scan

sin
sprint
sqrt
stdout
syserrors
tell
tolower

version

env
excepts
fctime
fgmode
fmtime
fput

fsize

get

getgn
getpid

inside
invexterns

invparsers

logil0
match

pclose
println
readdir
rmdir
scanln
sort
sprintln
srand
strtime
system
time
toupper

error_anode
exit

fget

fgn

fomode
fputln
ftype

getcwd
getgroups
getun

insv
invindexes
invregexps

max

popen
put

remove

seek

split

sput

stderr

sub
systemcalls
time_format
trans

errors
exp
fgetf
file
fprint
fscan

fumode

getegn
getf
gmatch

invaccesses
invkeys
isatty

min

pow
putln

rename

signals
split_regex
sputln
stdin

subv

token

The following identifiers are predeclared in the class except mentioned above.

error

The following identifiers are predeclared in the class error mentioned above.

deadlock
invaccess
invkey
signal

invcall
invop
syncwait

invenv

invindex

The following identifiers are predeclared in the class signal mentioned above.

sigabrt
sigsegv

sigfpe
sigterm

sigill

sigint

4. Declarations and Scope Rules 10

The following identifiers are predeclared in the class invop mentioned above.
optype opvalue

The following identifiers are predeclared in the class invindexr mentioned above.
indexop indextype indexvalue

The following identifiers are predeclared in the class invkey mentioned above.
keyop keyvalue

The following identifiers are predeclared in the class invcall mentioned above.

callop

eof

internal invenvar invextern invimt
invinput invparser invregexp invresult
parnumber partype

syncthreadcall syserror systemcall

The following identifiers are predeclared in the class syserror mentioned above.

eaccess eagain ebadf ebusy

echild edeadlk edom eexist
efault efbig eintr einval
eio eisdir emfile emlink
enametoolong enfile enodev enoent
enoexec enolck enomem enospc
enosys enotdir enotempty enotty
enxio eperm epipe erange
erofs espipe esrch exdev

The following identifiers are predeclared in the class systemcall mentioned above.

noshell

systemfail
The following identifiers are predeclared in the class invparser mentioned above.

invgrammar invtoken

pmemory

The following identifiers are predeclared in the class invregerp mentioned above.

badpat

ebrack ectype eend eescape
eparen erange esize espace
esubreg

The following identifiers are predeclared in the class invextern mentioned above.

4. Declarations and Scope Rules 11

libclose

noextern noexternsupp
The following identifiers are predeclared in the class invaccess mentioned above.

accessop accessvalue

immutable

4.1 Variable Declarations

Dino is an imperative language. In other words it has variables which are named containers of values. A
variable can contain any value. This means that DINO is a dynamically-typed language. The declaration
of a variable also may define the initial value of the variable. Assigning of the initial value to the variable
instance is made after execution of the previous statements of the block. By default the initial value of
variables is the special value nil. The value of the variable can not be changed after its initialization if its
declaration contains the keyword final.

VarDeclarations = var VarParList ";"
VarParList = VarPar { "," VarPar }

VarPar = [final] IDENT ["=" Expr]
Examples:

var i = 0, j, k;

var final constant = 10, final nil_constant, 1;

4.2 External Declarations

Dino permits to use functions written in other languages, e.g. C. The functions should have special prototypes
and must have to access to the DINO standard procedural interface (SPI). Dino can also have access to
variables of a special type declared in the source code in another language. The details of the implementation
of such features and the DINO SPT are not described here (some details are given in appendix B). As rule, the
external functions and variables will be implemented as dynamically loaded libraries. This is the powerful
instrument of DINO extension. The external functions and variables are declared after keyword extern.
An external function identifier is followed by (). All external declarations (e.g. in different blocks) with the
same identifier refer the the same external function or variable.

ExternDeclarations = extern ExternItem { "," ExternItem } ";"

ExternItem = IDENT
| IDENT n (u ||) n

Examples:

extern function (), variable;

4. Declarations and Scope Rules 12

4.3 Functions, Classes, Extensions

A function/class declaration consists of a function/class header and a function/class block (body). The
header specifies the function identifier and formal parameters. A function can return the result with the aid
of the statement return. If the result value after the keyword return is absent or the return statement is
absent or is not executed, the function returns nil by default. A class call returns an object of the class which
can be considered as a block instance of the class body. The return-statement for classes must be without a
result. Thread-functions are analogous to general functions. The difference is in that a new execution thread
is created during the thread-function call, the return-statement inside thread-function must be without an
expression, and the thread-function returns the corresponding (execution) thread. The execution thread
finishes when the corresponding thread block finishes. Execution threads are executed parallelly. Originally
only one thread (called the main thread) exists in a DINO program.

The formal parameters are considered to be declared in a function/class block and to be initialized by values
of actual parameters during a call of the function/class. The function can be called with any number of actual
parameters. If the number of actual parameters is less than the formal parameters number, the remaining
formal parameters are initialized by the special value nil. Otherwise if the number of actual parameters is
more than the number of formal parameters, the remaining actual parameter values are ignored. In order to
process all actual parameters, you should place ... at the end of the list of formal parameter declarations.
This means that the formal parameter with the identifier args will be declared implicitly. The value of the
parameter will be a vector whose elements will be the remaining actual parameter values. If the number of
actual parameters is less or equal to the number of formal parameters (not taking the implicit parameter
args into account), the value of args will be the empty vector. The formal parameter can be initialized
by a default value in a way analogous to variable initialization. The initialization is made only when the
corresponding actual parameter value is nil.

If a class contains a function with the name destroy, the function will be called when the class object
becomes garbage during the garbage collection process or at the end of the program. The function can also
be called explicitly if it is declared as public. You should be remember that although the function may have
parameters and return a value, the garbage collector (or finishing the program) ignores the result value and
does not pass actual parameters. The single exception when the function destroy is not called by finishing
the program is the case when memory can not be allocated more. So the values of the parameters will be
nil if the function is called by the garbage collector (or finishing the program). You may prevent removing
the corresponding object in the function destroy by assigning the object to a variable. It means that the
function can be called several times (during several garbage collections) for the same object. But you should
also avoid creation of objects during the call of function destroy because it may result in increase of the
heap.

Instead of inheritance usually used in object-oriented languages, Dino supports ezxtension. This feature
permits to modify function/class behaviour. All code inside an extension body is inserted at the end of body
of the function/class declared with the same identifier in the same block in the same order as the extensions
are placed in the block. A function/class declared as final can not be extended.

FuncClassExtDeclaration = Header Block

Header = [final] FuncThreadClass IDENT FormalParameters
| ext IDENT

FuncThreadClass = func
| thread

4. Declarations and Scope Rules

13

| class
FormalParameters = "(" [VarParList] ")"
| *(" VarParList "," "..."
I ll(ll Il'..ll ll)ll

Examples:

The following is a parameterless class header:
class stack ()
The following is a class header with an initialization:
class stack (max_height = var a = 1, b = 2;

putln (a, " ", b);
a<=>b;
putln (a, " ", b);

var ar = [1, 2, 3];
println (ar);
ar[0]<=>ar[2];

println (ar);

class s (1) {}

var c1 = s (0), c2 = s (3);
putln (cil.i, ’> °, c2.i);
cl.i<=>c2.1i;

putln (cil.i, ’> °, c2.i);

var t = {"s" : 1, "t" : 2};
putln (t{"s"}, > 7, t{"t"});
t{"s"}<=>t{"t"};

putln (t{"s"}, > 7, t{"t"});
100)

The following is a function with a variable number of parameters:

func print_args (...)
{
for (i = 0; i < #args; i++)
println (args[il);

The following example illustrates the usage of extensions:

class point (x = 0, y = 0) {
}
ext point {

class circle (radius = 1) {

||) n

4. Declarations and Scope Rules

14

func square () {return 3.14 * radius * radius;}

}
}
ext point {
ext circle {
class ellipse (width) {

func square () {

The following example is a class with the function destroy:

var objs_number = O;

class obj () {
private n, destroy;
var n = objs_number;

objs_number++;

func destroy () {objs_number--; objs_number--;}

The following example illustrates threads:

class buffer (length = 3) {
var b = [length:nil], first = 0, free = 0, empt
private b, first, free, length;
func consume () {

var res;

wait (lempty);
res = b [first];

first = (first + 1) % length;
wait (1) empty

first == free;
return res;

}

func produce (val) {
wait (empty || free != first);
b [free] = val;
free = (free + 1) 7 length;
wait (1) empty = 0;

thread consumer (buffer) {
func produce (val) {
buffer.produce (val);
put ("produce: ");
println (val);
}
produce (10);

5. Expressions 15

produce (10.5);
produce ("string");
produce (’c’);

produce (nil);

thread producer (buffer) {

var val;

for (5;) {
val = buffer.consume ();
if (val == nil)
break;
put ("consume: ");
println (val);
}

var queue = buffer ();
consumer (queue);

producer (queue);

5 Expressions

Expressions are constructs denoting rules of computation of a value from other values by the application
of operators. Expressions consist of operands and operators. Parentheses may be used to express specific
associations of operators and operands. Dino is a dynamic-typed language. This means that a variable can
store any Dino value.

5.1 Types and Values

All Dino values are first class values, i.e. they can be assigned to a variable, can be passed as a parameter
of a function/class, and can be returned by functions. Operators require operands whose values are of given
type and return the value of the result type. Most values have a representation in Dino. When a value
representation is encountered in an expression during the expression evaluation, the new value is generated.

There are values of structured types, i.e. values which are built from other values. The value of a structured
type may be mutable or immutable. A value or sub-value of a mutable value can be changed. An immutable
value can not be changed after its generation. You can make a mutable value immutable as a side effect by
applying the operator final (the table key is also made immutable as a side effect of writing to the table).
In all cases, the operator returns the operand value as the result. If you try to change an immutable value,
exception immutable is generated. You can make a new mutable value as a side effect of applying operator
new. The operator returns a new value equal to the operand value.

Expr = final Expr
| new Expr

Structured value types are also shared value types. This notion means that if two or more different variables

5. Expressions 16

(array elements or table elements or keys) refer to the same value and the value is changed through one
variable, the value which is referred through the other variables is changed too. There is no difference
between the notion ”the same value” and the notion ”equal values” for non-shared type values. For the
shared type operands, equality means that the operands have the same structure (e.g. vectors with the same
length) and the corresponding element values are the same.

Examples:
new 5
new [’a’, ’b’, ’c’]
new "abc"
new {"keyO" : 10, "keyl" : 20}
final 5

final [’a’, ’b’, ’c’]
final "abc"
final {"key0" : 10, "keyl" : 20}

Dino has the following types of values:

e the special value nil. This is the default value of all variables when a block starts. The value is
represented by the keyword nil.

Expr = nil

e character which represents ASCII characters. For the representation see Character in the section
Vocabulary and Representation.

Expr = CHARACTER

e integer. For its representation see Integer in the section Vocabulary and Representation. It is always
stored as a 32-bit integer value.

Expr = INTEGER

e floating point number. For its representation see FloatingPointNumber in section Vocabulary and
Representation. It is always stored as an IEEE double (64-bit) floating point value.

Expr = FLOATINGPOINTNUMBER

e vector. This is a structured shared type value. A vector value is represented by a list of values (or
expressions) in brackets with optional repetitions of the vector elements preceded by :. The repetition
value is converted into an integer value by default. If the repetition value after the conversion is not
integer, exception optype is generated. If the repetition value is negative or zero, the element value
will be absent in the vector. Elements of vector are accessed by their indexes. Indexes always starts
with 0. Vectors in Dino are heterogenous, i.e. elements of a vector may be of different types. A string
represents an immutable vector all of whose elements are characters in the string. Elements of mutable
vectors can be added to or removed from the vector (see predefined functions ins, insv, and del).

Expr = "[" ElistPartsList "]"
| STRING
ElistPartsList = [Expr [":" Expr] {"," Expr [":" Expr] }]

Examples:

5. Expressions 17

llaaabll

[)a;’ ;a)’)aa’)b:]

[3: ’a’, ’b’]

[3.0 : ’a’, ’b’]

[I|3II : ’a’, ’b’]

’a’, 10, 10.0, "abcd", {}]
1

e table. This is a structured shared type value. A table value is represented by a list of key values
(expression values) in figure parentheses { and } with optional element values with a preceding :.
By default the element value is equal to nil. It is not allowed to have elements with equal keys in a
table. If it is not true in a table constructor, exception keyvalue is generated. Elements of tables
are accessed by their keys. Elements of mutable tables can be added to or removed from the table
correspondingly by assigning values and with the aid of the function del. The side effect of the table
constructor execution is that the keys become immutable.

Expr = "{" ElistPartsList "}"
Examples:

{’a’, ’b’, 10:[10]}

{’a’ : nil, ’b’ : nil, 10 : [10]}
{[10, ’a’, {10}] : 10, [10] : {20:20}}
{

e function. Its value is represented by the function designator. It is important to remember that the
function is bound to a context.

e thread-function. Its value is represented by the thread-function designator. It is important to remember
that the thread-function is bound to a context.

e class. Its value is represented by the class designator. It is important to remember that the class is
bound to a context.

e block instance. There is no Dino representation of such values.

e thread. There is no literal Dino representation of such values. A thread value is generated by calling
a thread-function.

e object(class instance). This is a structured shared type value. There is no literal Dino representation
of such values. Objects are generated by calling classes.

e hide value. A hide value can not be generated by a Dino code. They are generated by external

functions.

e hide block. This value is analogous to a hide value. The differences are in that the size of a hide value
is constrained by a C program pointer. The size of q hideblock value has no such constraint. Also a
hideblock is of shared type.

e type. The values of such types are returned by th special operator type (expression).

Expr = char
| int
I

float

5. Expressions

18

| hide
| hideblock

| vector

| table

| func

| thread

| class

| func "(" ")"
| thread "(" ")"
| class "(" ")"
I

type

There are the following type values:

— type of nil. There is no value representing type of nil. So use the construction type (nil) to

get it.

— type
— type
— type
— type
— type
— type
— type
— type
— type
— type
— type
— type
— type
— type

of characters. The value is represented by the Dino keyword char.

of integers. The value is represented by the Dino keyword int.

of floating point numbers. The value is represented by the Dino keyword float.

of vectors. The value is represented by the Dino keyword vector.

of tables. The value is represented by the Dino keyword table.

of functions. The value is represented by the Dino keyword func.

of thread-functions. The value is represented by the Dino keyword thread.
of classes. The value is represented by the Dino keyword class.

of block instances. The value is represented by the Dino construction func ().
of threads. The value is represented by the Dino construction thread ().
of objects. The value is represented by the Dino construction class ().

of hide values. The value is represented by the Dino keyword hide.

of hideblocks. The value is represented by the Dino keyword hideblock.
of types. The value is represented by the Dino keyword type.

5.2 Designators

There is a special Dino construction called a designator. A designator refers for a vector or table element

or for a declaration. If the designator refers to a vector or table element or for a variable declaration, it

can stand in the left hand side of an assignment statement. If the designator stands in an expression, the

corresponding value is used (vector/table element value, variable value, function, thread-function, or class).

When the designator referring to table element stands up in the left hand side of an assignment statement,

its key becomes immutable.

Expr = Designator

A designator referring to a vector element has the following syntax:

5. Expressions 19

Designator = DesignatorOrCall "[" Expr "I"

DesignatorOrCall = Designator
| Call

The value of the construction before the brackets must be a vector. Otherwise, the exception indexop is
generated. The value of expression in the brackets (so called the indez) is converted to integer. If this is not
possible, exception indextype is generated. If the index is negative or greater than or equal to the vector
length, the exception indexvalue is generated. The value of the designator will be the vector element value
with given index (the indexes starts with zero). Examples:

vect [1]
vect ["1"]
vect [1.0]

A designator referring to a table element has the following syntax:
Designator = DesignatorOrCall "{" Expr "}"

The value of the construction before the figure brackets must be a table. Otherwise, the exception keyop is
generated. The value of expression in the figure brackets is called the key. The value of the designator will
be the table element value with the key which is equal to given key. If the element with the given key is
absent in the table, exception keyvalue is generated. Examples:

tab {’c’}
tab {10}
tab {"1"}
tab {1.0}

The remaining forms of designator refer to a declaration. See section Declarations and Scope Rules for a
description on how they work.

Designator = DesignatorOrCall "." IDENT
| IDENT
Examples:
value
value.f
5.3 Calls

One form of expression is the call of a function, thread-function, or class. The value of the designator
before the actual parameters should be a function, thread-function, or class. Otherwise, the exception
callop is generated. An instance of the block corresponding to the body of the function, thread-function,
or class is created. The actual parameter values are assigned to the corresponding formal parameters. If
the corresponding function, thread-function, or class has no default formal parameter args (see section
Declarations), the remaining actual parameter values are ignored. Otherwise, a vector whose elements are

5. Expressions 20

the remaining parameter values is created and assigned to the parameter args. If there is no corresponding
actual parameter for a formal parameter, the default parameter value (see section Declarations) or the value
nil is assigned to the formal parameter. Then statements in the block are executed. If it is the call of a
thread-function, a new execution thread is created, and the statements of the block is executed in the new
thread. The value of call of the thread-function is the corresponding thread. It is returned before starting
the execution of statements in the new thread.

Execution of the body is finished by reaching the block end or by execution of a return-statement. Finishing of
the thread-function results in finishing the corresponding thread. The return-statement in a thread-function
or in class should be without an expression. The call of a class returns the created object. A function call
returns the value of the expression in the executed return-statement. Otherwise, the function call returns
the value nil.

Expr = Call

Call = Designator ActualParameters

ActualParameters = "(" [Expr { "," Expr }] ")"
Examples:

£ 0

£ (10, 11, ni, [

obj.objf ()

5.4 Operators

Expressions consist of operands and operators. The order in which operators are executed in an expression
is defined by their priority and associativity of operators. That means that the expression a opl b op2 ¢
when the operator op2 has higher priority than op1 is analogous to a opl (b op2 c). Dino operators have
analogous priorities to the ones in C language. The following Dino operators are placed in the order of their
priority (the higher the line on which the operator is placed, the higher its priority).

' # ~ final new

in
& &
Il

5. Expressions 21

All binary operators have left associativity in Dino. That means that the expression a opl b op2 c¢ when
operators opl and op2 have the same priority is analogous to (a opl b) op2 c. Parentheses may be used
to express specific associations of operators and operands.

Expr = II(’I EXPI‘ u)u

Most of the Dino operators require the operands to be of given types. If an operand is not of given type,
the conversion of it into the type needed may be made. If after the possible conversions the operands are
still not of necessary types, exception optype is generated (when something about exceptions in this case is
not mentioned). The following conversions may be made by default:

e Integer conversion. If the operand is a character, its code becomes integer. If the operand is a floating
point number, its fractional part is thrown away and integral part becomes integer. If the operand
is a vector of characters, the corresponding string is believed to be the decimal representation of
integer and is converted into the corresponding integer. If the corresponding string is not a correct
integer representation, the result is undefined. If the corresponding string represents an integer whose
representation requires more 32 bits, exception syserrors.erangemay be generated. In all remaining
cases the results of conversion coincide with the operand.

o Arithmetic conversion. Analogous to integer conversion except for that the conversion of float pointing
number to integer is not made and if the string represents a floating point number (i.e. contains an
exponent or fraction), the result will be the corresponding floating point number instead of integer.
Additionally if the operand is in a non-short circuit binary operator (non-logical operators) and another
operand is a floating point number after the conversion, the first operand is converted into a floating
point number too. Analogously if the result is an integer which can not be represented by a 32-bit
integer or the result is a floating point number not represented by IEEE double format, the exception
syserrors.erange may be generated.

e String conversion. If the operand is a character, the result will be a new string (immutable vector of
characters) with one element which is the character. If the operand is an integer or a floating point
number, the result will be a new string of characters which is a decimal string representation of the
number.

5.4.1 Logical operators

Logical operators produce the integer result 1 which means ¢rue or 0 which means false. Logical ‘or’ || and
logical ‘and’ & & are short circuit operators. That means that the second operand is evaluated depending on
the result of the first operand. When the operands of the operators are evaluated, the arithmetic conversion

is made.

If the first operand of logical ‘or’ is nonzero (integer or floating point), the result will be 1. Otherwise, the
second operand is evaluated. If the second operand is nonzero, the result will be 1. Otherwise, the result
will be 0.

If the first operand of logical ‘and’ is zero (integer or floating point), the result will be 0. Otherwise, the
second operand is evaluated. If the second operand is nonzero, the result will be 1. Otherwise, the result
will be 0.

L')

Logical negation makes impilict integer conversion of the operand. If the operand is zero (integer or

floating point), the result will be 1. Otherwise, the result will be 0.

5. Expressions 22

Operator in checks that there is an element with the given key (the first operand) in the given table (the
second operand). If the element is in the table, the result will be 1. Otherwise the result will be 0. If the
second operand is not a table, exception keyop is generated.

Expr "||" Expr

| Expr "& & " Expr
| Expr in Expr
|

"1 Expr
Examples:

I(type (i) == int & & type (a) == table & & i >= 0 & & i < #a)
kint & & t {k} ==

0.0 || another_try

0 || another_try

5.4.2 Bit operators

The following operators work on integers (implicit integer conversion is made) and return an integer result.
Operators | ~ & ~ denote correspondingly bitwise or, bitwise exclusive or, bitwise and, and bitwise negation
of 32-bit integers.

Operators << >>> >> denote correspondingly logical left bit shift, logical right bit shift, and arithmetic
(with sign extension) right bit shift of given number (the first operand) by given number of bits (the second
operand). The value of the second operand must be non-negative, otherwise the result is undefined.

Expr = Expr "|" Expr
Expr """ Expr
Expr "& " Expr

|

|

| Expr "<<" Expr
| Expr ">>" Expr
| Expr ">>>" Expr
|

n~n EXPr
Examples:

(i >> shift) & mask

i & “mask | (value << shift) & mask
i >>> 2

i << 2

5.4.3 Comparison operators

All comparison operators return a logical value (integer 0 which means false or integer 1 which means true).

Operators equality == and inequality != may make some conversion of the operands. If one of the two
operands is string, then the string conversion is applied to the other operand before the comparison. Other-
wise, standard arithmetic conversion is applied to the operands. The operators do not generate exceptions
(but the conversions may). The operands are equal if they have the same type and equal values (see section
Types and Values). For instances, functions and classes, the equality requires also the same context.

5. Expressions 23

Operator identity === or unidentity !== returns 1 if the operands have (or not) the same value or 0 otherwise.
The operators never generate exceptions.

By default the arithmetic conversion is applied to the operands of operators < > <= >=. There is no
exception if the operands after the conversion are of integer or floating point type. So the operands should
be characters, integers, floating point numbers, or strings representing integers or floating point numbers.

Expr = Expr "==" Expr
Expr "!=" Expr
Expr "===" Expr
Expr "!==" Expr

Expr ">" Expr

|

|

|

| Expr "<" Expr
|

| Expr "<=" Expr
|

Expr ">=" Expr

Examples:

10 == 10

10 === 10

10 == 10.0

10 !== 10.0

10 <= ’¢’

p !'= nil

yer == ngn

10 < "20.0"

[10, 20] == [10, 20]
[10, 20] !== [10, 20]

5.4.4 Arithmetic operators

The following operators return integer or floating point numbers. Before operator execution, implicit arith-
metic conversion is made on the operands. The binary operators + - * / 7% denote correspondingly integer
or floating point addition, subtraction, multiplication, division, and evaluation of remainder. Unary operator
- denotes arithmetic negation. The unary operator + is given for symmetry and it returns simply the operand
after the conversion. It can be used for conversion of a string into an integer or floating point number.

Expr = Expr "+" Expr
Expr "-" Expr
Expr "x" Expr
Expr "/" Expr

|

|

|

| Expr "%" Expr
| Il+ll EXPI'

|

n_n EXPI'
Examples:
+ " O n

+"10."
+"1el1"

5. Expressions 24

-i
(value +m - 1) / m *m

index % bound

5.4.5 Miscellaneous operators

The Dino conditional expression is analogous to the C language one. Implicit arithmetic conversion is made
for the first expression followed by ?. If the value of the expression is non zero (integer or floating point),
the second expression with following : is evaluated and it will be the result of the condition expression.
Otherwise, the third expression is evaluated and it becomes the result.

The operator # can be applied to a vector or a table. It returns the length of the vector or the number of
elements in the table.

The operator @ denotes concatenation of two vectors into a new vector. Before the concatenation implicit
string conversion of the operands is made.

The remaining operators look like function calls. Operator type returns the expression type. Never is
exception generation possible during the operator evaluation.

The operator char is used to conversion of a value into a character. First, implicit integer conversion is
applied to the operand. The operand should be an integer after the conversion. Otherwise, exception
optype will be generated. The integer is transformed into the character with the corresponding code. If the
code is too big to be a character or is negative, exception syserrors.erange is generated.

The operator int is used to conversion of a value into an integer. Implicit integer conversion is applied to
the operand. The operand should be an integer after the conversion. Otherwise, exception optype will be
generated. If the code is too big to be an integer, exception syserrors.erange is generated.

The operator float is used to conversion of a value into floating-point number. The first, implicit arithmetic
conversion is applied to the operand. The operand should be an integer or a floating-point number after
the conversion. Otherwise, exception optype will be generated. If the result integer is transformed into
the corresponding floating-point number. If the code is too big or too small to be a floating-point number,
exception syserrors.erange is generated.

The operator vector is used for conversion of a value into a vector. First, implicit string conversion is applied
to the operand. The optional second expression defines the format used only for the string conversion of a
character, an integer, a floating point number, or a string. The second parameter value should be a string
after implicit string conversion. The format should not be given for a table. The first operand should be a
table or a vector after conversion. The table is transformed into a new vector which consists of pairs (one
pair for each element in the table). The first element of the pair is a key of the corresponding element, and
the second one is the element itself. The order of pairs in the result vector is undefined.

The operator table is used to conversion of a value into table. First, string conversion is applied to the
operand. The operand should be a vector or a table after the conversion. The vector is transformed into a
new table whose elements are equal to the vector elements that have integer keys equal to the corresponding
vector indexes.

If the operand of the operator func is a block instance of the body of a function, it returns the corresponding
function. Otherwise, it returns the value nil. The operator never generates exceptions.

If the operand of the operator thread is a thread, it returns the corresponding thread-function. Otherwise,
it returns the value nil. The operator never generates exceptions.

6. Executive statements 25

If the operand of the operator class is an object, it returns the object’s class. Otherwise, it returns the
value nil. The operator never generates exceptions.

Expr = Expr "?" Expr ":" Expr
| "#" Expr
| Expr "@" Expr

| type "(" Expr ")"

| char "(" Expr ")"

| int "(" Expr ")"

| float "(" Expr ")"

| vector "(" Expr ["," Expr] ")"

| table "(" Expr ")"

| func "(" Expr ")"

| thread "(" Expr ")"

| class "(" Expr ")"

Examples:

i<10 7 i : 10

#{"a", b’}

#["a", ’b’]

"concat this " @ "and this"
type (type)

type (10)

char (12)

vector (10)

vector (10, "%x")
vector ({"1":1, "2":2})
table ([1, 2, 3, 4])
func (context (obj))
thread (curr_thread)
class (¢)

6 Executive statements

Statements denote actions. There are simple and compound statements. Simple statements do not consist of
any parts that are statements themselves. They are the assignment, procedure call, return, break, continue,
throw, and the wait statements. Analogous to the C language the last symbol of a Dino simple statement
is semicolon ;. Compound statements consists of parts that are statements themselves. They are used to
express sequencing, exception handling, conditional, and repetitive execution.

6.1 Empty statement

There is also the empty statement in Dino. It denotes no action. The empty statement is included in Dino
for convenience.

ExecutiveStmt = ";"

Example: Usage of an empty statement in a for-statement:

6. Executive statements 26

for (i = 0; al[i] == 0; i++)

>

6.2 Block-statement

A block-statement is simply a block and can used to group statements into one statement and/or describe
local declarations. For details on how the block is executed see section Declaration and Scope Rules.

ExecutiveStmt = BlockStmt

BlockStmt = Block
Example: Usage of a block-statement in a for-statement:

sum = 0;
for (i = 0; i < #a; i++)
{
var value = al[i];
if (value > 0)

sum += value;

6.3 Assignment statements

Assignment-statements are used to change variable values or element values of a structured value which
are referred through a designator (see sub-section Designator in section Expressions. The designator can
not denote a final variable (see section Variable Declaration). You can not change the element value of an
immutable value (see section Types and Values). In this case exception immutable is generated. Assignment
to a table element has a side effect, the element key becomes immutable.

A simple assignment statement looks like Designator = Expr;. That means that the expression value is
assigned to variable or element of structured type value denoted by the designator. For the convenience of C
programmers there are also the Dino assignments Designator op= Expr;, Designator++;, ++Designator;,
Designator--;, and --Designator;. They are analogous correspondingly to Designator = Designator
op Expr;, Designator = Designator + 1;, and Designator = Designator - 1;. The only difference is
in the fact that the designator is evaluated only once, not twice as in the analogous form. It is important to
know if you have side effects in the statement.

A special construction Designator <=> Designator; swaps values of the designators.

ExecutiveStmt = Designator Assign Expr ";"
| Designator ("++" | "—==") ";"
| ("++" | "--") Designator ";"
| Designator <=> Designator ";"
Assign = "="
T
n/=n
ny=n

Hp=n

6. Executive statements 27

|
| "e="
| "<<="
| ">>="
[">>>="
| "& ="
| me=n
[ry="
Examples:

v = [10, 20];

i=1;

it++;

__i;

i *= 20;

v [0] <=> v [1];

6.4 Call-statement

A call-statement is used to call a function, a thread-function, or a class. It works analogous to the call
in an expression (see sub-section Calls in section Types and Values). The single difference is in that a
call-statement throws away the call’s result.

ExecutiveStmt = Designator ActualParameters ";"
Examples:

putln ("percent=" @ percent @ "%");
newthread ();

6.5 If-statement

The Dino if-statement is analogous to the C language one. First, the expression after if is evaluated and
arithmetic conversion is done to it. The value should be an integer or a floating-point number, otherwise
the exception optype is generated. If the value is nonzero the first statement is executed, otherwise the
statement after else is executed (if any). The problem with dangling else is resolved analogous to the C
language — else is associated with the closest if.

ExecutiveStmt = if " (" Expr ")" Stmt [else Stmt]
Examples:

if (1 < 0) i = 0;
if (1 < j) return -1; else if (i > 0) return 1; else return O;

6. Executive statements 28

6.6 For-statement
The Dino for-statement is analogous to the C language one. The statement is executed in the following way.

1. Execution of the first statement in the parentheses.

2. The expression (for-guard) is evaluated and implicit arithmetic conversion is made. The value should
be an integer or a floating point number. If this is not true, exception optype is generated.

3. If the value of for-guard is nonzero, the body of the loop (the last statement) is executed. Otherwise,
the for-statement execution finishes.

4. When the body has been executed, the second statement in the parentheses is executed and steps 2,3,4
(one iteration) are repeated.

If the second statement is a simple statement, the statement semicolon can be omitted. The for-statement
also can be finished by execution of the statement break in the body. The body can be finished by execution
of statement continue. In this case, the for-statement execution continues with the step 4.

ExecutiveStmt = for "(" Stmt ForGuardExpr ";" Stmt ")" Stmt

ForGuardExpr = [Expr]
Examples:

for (i = 0; i < 10; i++;) sum += v [i];
for (i = 0; i < 10; i++) sum += v [i];
for ({sum = 0; i = 0;} i < 10; i++) sum += v [i];

6.7 Foreach-statement

This statement is used to execution of the foreach-statement body (the statement) for all keys of table which
is value of the expression. The expression value should be a table. If this is not true, exception keyop is
generated. The current key value on each iteration is assigned to the designator. The order in which the
key values are assigned on each iteration is undefined. One iteration can be finished with the aid of the
statement continue and a foreach-statement can be finished by execution of statement break.

ExecutiveStmt = for "(" Designator in Expr ")" Stmt
Examples:

putln ("The table is");
for (k in t) {
put ("key=");
print (k);
put (", element=");
println (t{k});
}

6. Executive statements 29

6.8 Break- and continue-statement

Statements break and continue are used correspondingly to finish execution of the closest-containing for-
or foreach-statement covering the statement and to finish one iteration of the body of the for- or foreach-
statement. These statement can be used only inside a for- or foreach-statement.

ExecutiveStmt = break ";"

| continue ";"

Examples:

for (i = 0; i < 10; i++) {

if (ind [i] < 0)
continue;

val = v [ind[i]l];

}

for (i in t)
if (t{i} == elval)

break;

6.9 Return-statement

Return-statement is used to finish execution of a function, a thread, or class block. The statement corresponds
to the closest-containing function, thread-function, or class covering the statement, so the return-statement
can be placed only in a function, a function-thread, or a class. The expression in a return-statement can be
given only for functions. In this case, the expression value will be the value of the function call (instead of
the default result value nil).

ExecutiveStmt = return [Expr] ";"
Examples:

return;
return [10, 2:0]

6.10 Throw-statement

This statement generates an exception which is given by value of the expression. The expression should
evaluate to an object of predeclared class except or an object of a class declared somewhere in predeclared
class except. If this is not true, exception optype is generated. How exceptions are processed is described
in the following section.

ExecutiveStmt = throw Expr ";"
Examples:

ext except {
ext error {

6. Executive statements 30

class myexcept (msg) {}
}
}

throw errors.myexcept ("this is an user defined exception");

6.11 Try-block

Exceptions can be generated by the Dino interpreter when some conditions are not satisfied, by predeclared
Dino functions, by other OS processes, by user interruptions, or by the user with the aid of a throw-statement.
Actually, the exceptions are represented by an object of the predeclared class except or by an object of a
class declared inside the predeclared class except. All predeclared exceptions are described in the section
Predeclared Identifiers. To detect and process exceptions, a try-block can be used.

When an exception is generated, the closest-containing try-block which is covering the statement generating
the exception or currently being executed (when this is is generated by an OS process or by an user inter-
ruption) is searched for. Then, expressions in the catch list elements are processed. The expression value in
the catch list element being currently processed should be the predeclared class except or a class declared
inside the predeclared class except. If the expression being processed is a class and the exception is an
object of the class or an object of a class declared inside the class, the block corresponding to the given catch
list element is executed. If there is no such catch expression, the closest-containing try-block covering the
current try-block is searched for and processing the exception is repeated. If there are no more try-blocks,
the program finishes with a diagnostic message which is dependent on the generated exception.

Blocks corresponding to catch list elements have a predeclared variable e. When block execution starts, the
variable contains the object representing the exception.

ExecutiveStmt = TryBlockStmt
TryBlockStmt = try Block { Catch }
Catch = catch "(" ExceptClassList ")" Block
ExceptClassList = Expr { "," Expr }
Examples:
try {
var 1n;
for (;3)

1n = getln O;
} catch (invcalls.eof) {

}

try {
var v = [];
v {1} = 0;

} catch (except) {
put ("catching and propagating exception"); println (class (e));
throw e;

}

7. Program 31

6.12 Wait-statement

This statement is used for the synchronization of different threads in a Dino program. The expression can
not contain a function, class, or a thread-function call. The thread in which the statement has been executed
waits until the expression value becomes nonzero. The expression value (after implicit arithmetic conversion)
should be an integer or a floating point number. Otherwise the exception optype is generated. When the
expression value becomes nonzero, the statement after the expression (it is called sync-statement) is executed
without interruption by other process. It is used as critical region for process synchronization. In a critical
region execution of wait-statement is prohibited (it results in generation of exception syncwait). Also thread
calls inside a critical region result in generation exception syncthreadcall.

ExecutiveStmt = wait " (" Expr ")" Stmt
Examples:

wait (!empty);

7 Program

A Dino program is simply a sequence of statements. There is a special declaration useful for writing programs
consisting of several files or for making Dino packages. This is the include-declaration. Before execution of
any statements all include-declarations are replaced by files whose base names are given by the strings. It is
made recursively, i.e. the files themselves can contain other include-declarations. There should be no infinite
recursion in this. If 4 is present in the include-declaration, the file is inserted in any case. Without 4 the
file is inserted only if it has been yet not inserted into the block of the declaration.

Program = StmtList

IncludeDeclaration = include ["+"] STRING ";"

Examples:

The following program outputs the first 24 Fibonachi numbers:

// Recursive function to compute Fibonacci numbers
func fibonacci (n)

{
if (n <= 1) return 1;

return (fibonacci(n-1) + fibonacci(n-2));

var i, fibnum;

fibnum = 0;
for (i = 0; i <= 24; i++)
{
fibnum = fibonacci(i);
putln (i @ " " @ fibnum);

}

7. Program

The following program outputs the number of prime numbers less than 8190:

var i, prime, k, count, flags;

var final SieveSize = 8190;

[SieveSize + 1 : 0];

count = 0;

flags

for (i = 0; i <= SieveSize; i++)
flags[i] = 1;
for (i = 0; i <= SieveSize; i++)
if (flags[il)
{
prime = i + i + 3;
k = i + prime;
for (1;;)
{
if (k > SieveSize)
break;
flags[k] = 0;
k += prime;
}
count++;
}

println (count);
The following program outputs the number of occurrences of different numbers and identifiers in stdin:

var i, key, voc = {};
for (;;)
try {
var ln, a;

1n = getln O;
if (ln == "")
continue;
a = split (1n, "["[:alnum:]]1");
for (i = 0; i < #a; i++)
voc {al[il} = (al[i] in voc ? voc {al[il} + 1 : 1);
} catch (invcalls.eof) {
break;
¥
func comp (ell, el2) {
return cmpv (tolower (ell), tolower (el2));
}
key = sort (keys (voc), comp);
for (i = 0; i < #key; i++)
putln (key[il, " : ", voc{key[il});

The following program uses the Dino package mpi:

include "mpi";

8. Predeclared identifiers 33

var mpil, mpi2;

mpil = mpis.from_string(50, "1000000000000000000000000000000000000") ;
mpi2 = mpis.from_string(50, "5000000000000000000000000000000000000") ;
putln (mpis.to_string (mpis.add (mpil, mpi2)));

8 Predeclared identifiers

Dino has quite a lot of predeclared identifiers. The section Declarations and Scope Rules contains them in
alphanumeric order. Here they are described according to the declaration category which they belongs to.

8.1 Predeclared variables

Dino has some predeclared variables which contain useful information or can be used to control the behaviour
of the Dino interpreter.

8.1.1 Arguments and environment

To access arguments to the program and the environment, the following variables can be used:

e argv. The variable value is an immutable vector whose elements are strings (immutable vectors of
characters) representing arguments to the program (see implementation).

e env. The variable value is immutable table whose elements are strings (immutable vectors of characters)
representing values of environment variables whose names are the keys of the table.

8.1.2 Version

As Dino is a live programming language, it and its interpreter are in the process of permanent development.
To access the Dino interpreter’s version number and consequently the language version, the final variable
version can be used. The variable value is the Dino version as a floating point number. For example, if the
current Dino version is 0.54, the variable value will be 0.54.

8.1.3 Threads

To access some information about threads in Dino program, the following variables can be used.

e main thread. The variable value is the main thread. When the program starts, there is only one
thread which is called the main thread.

e curr_thread. The variable value is the thread in which you reference the variable.

All these variables are final, so you can not change their values.

8. Predeclared identifiers 34

8.1.4 Exceptions

When it is necessary to create an exception which is a object of a class declared inside class except or when

it is necessary to refer to a class inside class except, the following variables can be used. Instead of typing

catch (except().signal().sigint), you could type catch (signals.sigint).

excepts. The variable value is an object of the class except.

errors. The variable value is an object of the class excepts.error.

signals. The variable value is an object of the class errors.signal.

invops. The variable value is an object of the class errors. invop.
invindexes. The variable value is an object of the class errors.invindex.
invkeys. The variable value is an object of the class errors.invkey.
invcalls. The variable value is an object of the class errors.invcall.
syserrors. The variable value is an object of the class invcalls.syserror.
systemcalls. The variable value is an object of the class invcalls.systemcall.
invparsers. The variable value is an object of the class invcalls.invparser.
invregexps. The variable value is an object of the class invcalls.invregexp.
invexterns. The variable value is an object of the class invcalls.invextern.

invaccesses. The variable value is an object of the class errors.invaccess.

All these variables are final, so you can not change their values.

8.1.5 Files

To output something into standard streams or to input something from the standard input stream, the

following variables can be used:

stdin. The variable value is an object of the class file which corresponds to the standard input
stream.

stdout. The variable value is an object of the class file which corresponds to the standard output
stream.

stderr. The variable value is an object of the class file which corresponds to the standard error
stream.

All these variables are final, so you can not change their values.

8. Predeclared identifiers 35

8.1.6 Miscellaneous variables
Values of the following variables are used by some predeclared functions:

e split_regex. The variable value is a string which represents regular expression which is used by the
predeclared function split when the second parameter is not given. The initial value of the variable
is string "[\t]+".

e time format. The variable value is a string which is the output format of time used by the function
strtime when it is called without parameters. The initial value of the variable is the string "%a %b
%d RH:SM:%S hZ hY".

8.2 Predeclared classes

The most of the predeclared classes describe exceptions which may be generated in Dino program.

8.2.1 File

Dino has predeclared final class file. Work with files in Dino program are made through objects of the
class. All declarations inside of class are private. The objects of the class can be created only by predeclared
functions open or popen. If you create an object of the class by calling the class, exception callop will be
generated.

8.2.2 Exception classes

All Dino exceptions are represented by objects of the predeclared class except or of a class in the class except.
The class except has no parameters, therefore all arguments in calling the class will be ignored. There is
one predeclared class error inside class except. All classes corresponding to user-defined exceptions are
suggested to be declared in class except not in the class error because all other exceptions (e.g. generated
by the Dino interpreter itself or by predeclared functions) are objects of the class error or predeclared classes
inside the class error. The class error and all classes inside the class has one parameter msg which contains
a readable message about the exception. The following classes are declared in the class error:

e signal. Classes inside this class describe exceptions from receiving a signal from other OS processes.
They are
— sigint. This class describes the exception generated by the user’s interrupt from the keyboard.
— sigill. This class describes the exception generated by illegal execution of an instruction .
— sigabrt. This class describes the exception generated by the signal abort.
— sigfpe. This class describes floating point exception.
— sigterm. This class describes the exception generated by the termination signal.
— sigsegv. This class describes the exception generated by an invalid memory reference.

e invenv. This class describes corruption of the Dino program environment (see predeclared variable

env).

8. Predeclared identifiers 36

e invop. Classes inside this class describe exceptions when operands of operations have an incorrect
type or value.

— optype. This class describes that the operand of an operation is not of the required type (possibly
after implicit conversions).
— opvalue. This class is reserved for the error of that an operand of an operation has invalid value.
Now this exception is not generated.
e invindex. Classes inside this class describe exceptions in referring for a vector element.
— indextype. This class describes that the index is not of integer type (possibly after implicit
integer conversion).

— indexvalue. This class describes that the index is negative or equal to or more than the vector
length.

— indexop. This class describes that the first operand in referring to a vector element is not a

vector.
e invkey. Classes inside this class describe exceptions in referring to a table element.

— keyvalue. This class describes that there is no such element in the table with the given key when
we need the value of the element. The exception does not occur when a table element reference
stands in the left hand side of an assignment-statement.

— keyop. This class describes that the first operand in referring to a table element is not a table.
e invcall. Classes inside this class describe exceptions in calling functions (mainly predeclared ones).

— callop. This class describes that we try to call something which is not a function, class, or
thread-function. The exception is also generated when you try to create a class file instance by
calling the class.

— partype. This class describes that a parameter value of a predeclared function is not of required
type.

— invfmt. This class describes that a format of a format output function is wrong (see function

putf.

— invresult. This class describes that the result value of function call is not of required type, e.g.
comparison function used in a call to function sort returns a non integer value.

— invinput. This class describes that the file input is not of required format. Usually the exception
is generated by function scan etc.

— eof. This class describes that end of file is encountered. Usually the exception is generated by
functions reading files (get, scan etc).

— parnumber. This class describes that the number of actual parameters is not valid when we call
a predeclared function.

— syserror. Classes inside this class describe exceptions in predeclared functions which call OS
system functions. Some exceptions are never generated but may be generated in the future on
some OSes.

* eaccess. This describes the system error ”Permission denied”.

* eagain. This describes the system error ”Resource temporarily unavailable”.

8. Predeclared identifiers

37

*

*

— systemcall.

ebadf. This describes the system error ”Bad file descriptor”.
ebusy. This describes the system error ”Resource busy”.

echild. This describes the system error ”No child processes”.
edeadlk. This describes the system error ”Resource deadlock avoided”.
edom. This describes the system error ”Domain error”.

eexist. This describes the system error ”File exists”.

efault. This describes the system error ”Bad address”.

efbig. This describes the system error "File too large”.

eintr. This describes the system error ”Interrupted function call”.
einval. This describes the system error ”Invalid argument”.

eio. This describes the system error "Input/output error”.
eisdir. This describes the system error ”Is a directory”.

emfile. This describes the system error ”Too many open files”.
emlink. This describes the system error ”Too many links”.

enametoolong. This describes the system error ”Filename too long”.

enfile. This describes the system error ”Too many open files in system”.

enodev. This describes the system error ”No such device”.

enoent. This describes the system error ”No such file or directory”.
enoexec. This describes the system error ”Exec format error”.
enolck. This describes the system error ”No locks available”.
enomem. This describes the system error ”Not enough space”.

enospc. This describes the system error ”No space left on device”.
enosys. This describes the system error ”Function not implemented”.
enotdir. This describes the system error "Not a directory”.

enotempty. This describes the system error ”Directory not empty”.

enotty. This describes the system error "Inappropriate I/O control operation”.

enxio. This describes the system error ”No such device or address”.
eperm. This describes the system error ”Operation not permitted”.
epipe. This describes the system error ”Broken pipe”.

erange. This describes the system error ”Result too large”.

erofs. This describes the system error ”Read-only file system”.
espipe. This describes the system error ”Invalid seek”.

esrch. This describes the system error ”No such process”.

exdev. This describes the system error ”Improper link”.

system.

Classes inside this class describe exceptions in calling the predeclared function

* noshell. This class describes the exception that the function system can not find the OS

command interpreter (the shell).

x systemfail. This class describes all remaining exceptions in calling the OS function system.

— invparser. Classes inside this class describe exceptions specific for calling functions of the pre-

declared class parser implementing the Earley parser.

8. Predeclared identifiers 38

*

*

*

invgrammar. This class describes the exception that the Earley parser got a bad grammar,
e.g. without rules, with loops in rules, with nonterminals unachievable from the axiom, with
nonterminals not deriving any terminal string etc.

invtoken. This class describes the exception that the parser got an input token with unknown
(undeclared) code.

prmemory. This class describes the exception that there is not enough memory for internal
parser data.

— invregexp. Classes inside this class describe exceptions specific for calling predeclared functions

implementing regular expression pattern matching.

*

ebrack. This class describes the exception that a regular expression has an unmatched
bracket.

erange. This class describes the exception that there is an invalid use of range in regular
expression.

ectype. This class describes the exception that there is an unknown character class name in

regular expression.

eparen. This class describes the exception that a regular expression has an unmatched
parenthesis.
esubreg. This class describes the exception that there is an invalid back reference to a

subexpression in a regular expression.
eend. This class describes the exception that there is a non specific error in regular expression.
eescape. This class describes the exception that there is a trailing backslash.

badpat. This class describes the exception that there is invalid use of pattern operators in a
regular expression.

esize. This class describes exception that the compiled regular expression is too big.

espace. This class describes the exception that there is no memory for a regular expression
function to work.

— invextern. Classes inside this class describe exceptions in calling external functions or in accessing

an external variable.

*

*

*

noextern. This class describes the exception that the given external can not be find.
libclose. This class describes the exception that there is an error in closing a shared library.

noexternsupp. This class describes an exception in the usage of externals when they are not
implemented under this OS.

— invenvar. This class describes corruption in the type of variables split_regex and time_format

(e.g. their values are not strings).

— internal. This class describes all other (nonspecified) exceptions in calling predeclared functions.

8.2.3 Earley parser classes

Dino has the three following classes which are used by the Earley parser embedded into the Dino interpreter.

Parser. Dino has predeclared final class parser which implements the Earley parser. The Earley parser is

a very powerful tool to implement serious language compilers, processors, or translators. The implementation

of the Earley parser used in Dino has the following features:

8. Predeclared identifiers 39

e It is sufficiently fast and does not require much memory. This is the fastest implementation of the
Earley parser which I know. The main design goal is to achieve speed and memory requirements which
are necessary to use it in prototype compilers and language processors. It parses 30,000 lines of C per
second on 500 MHz Pentium IIT and allocates about 5Mb memory for a 10,000 line C program.

e It makes simple syntax directed translation, so an abstract tree is already the output of the Earley
parser.

e [t can parse input described by an ambiguous grammar. In this case the parse result can be an abstract
tree or all possible abstract trees. Moreover, it produces the compact representation of all possible
parse trees by using DAG instead of real trees. These features can be used to parse natural language
sentences.

e It can make syntax error recovery. Moreover its error recovery algorithms find error recovery with a
minimal number of ignored tokens. It permits implemention of parsers with very good error recovery
and reporting.

e It has fast startup. There is practically no delay between processing of grammar and start of parsing.
e It has a flexible interface. The input grammar is given by a YACC-like description.

e It has a good debugging features. It can print huge amount of information about grammar, parsing,
error recovery, translation. You can even get the result translation in a form for a graphic visualization
program.

The following public functions and variables are declared in the class parser:

e ambiguous_p. This public variable stores information about the last parsing. A nonzero variable value
means that during the last parsing on a given input the parser found that the grammar is ambiguous.
The parser can find this even if you asked for only one parser tree (see function set_one_parse).

e set_grammar (descr, strict_p). This function tunes the parser to given grammar. The grammar
is given by string descr. Nonzero value of parameter strict_p (after implicit integer conversion)
means more strict checking the grammar. In this case, all nonterminals will be checked on their ability
to derive a terminal string instead of only checking the axiom for this. The function can generate
exceptions partype (if the parameters have wrong types) or invgrammar if the description is a bad
grammar. The function can also generate exception pmemory if there is no memory for internal parser
data.

The description is similiar to the YACC one. It has the following syntax:

file : file terms [’;’]
| file rule
| terms [’;’]
| rule

terms : terms IDENTIFIER [’=’ NUMBER]
| TERM

rule : IDENTIFIER ’:’ rhs [’;’]

rhs : rhs ’|’ sequence [translation]

8. Predeclared identifiers 40

| sequence [translation]

sequence :
| sequence IDENTIFIER
| sequence C_CHARACTER_CONSTANT

translation : ’#’
| ’#’ NUMBER
| 7#} PR
| ’#’ IDENTIFIER [NUMBER] ’(’ numbers ’)’

numbers :
| numbers NUMBER
| numbers ’-’

So the description consists of terminal declaration and rule sections.

The terminal declaration section describes the name of terminals and their codes. The terminal code is
optional. If it is omitted, the terminal code will the next free code starting with 256. You can declare
a terminal several times (the single condition is that its code should be the same).

A character constant present in the rules is a terminal described by default. Its code is always the
ASCII code of the character constant.

Rules syntax is the same as YACC rule syntax. The single difference is an optional translation con-
struction starting with # right after each alternative. The translation part could be a single number
which means that the translation of the alternative will be the translation of the symbol with the given
number (symbol number in the alternative start is with 0). Or the translation can be empty or ‘-’
which designates the value of the variable nil_anode. Or the translation can be an abstract node with
the given name, optional cost, and with fields whose values are the translations of the alternative sym-
bols with numbers given in parentheses after the abstract node name. You can use ‘-’ in an abstract
node to show that the empty node should be used in this place. If the cost is absent it is believed to

be 1. The cost of the terminal, error node, and empty node is always zero.

There is a reserved terminal error which marks the start point of error recovery. The translation of
the terminal is the value of the variable error_anode.

e set_debug (level). This function sets up the level of debugging information output to stderr. The
higher the level, the more information is output. The default value is 0 (no output). The debugging
information includes statistics, the result translation tree, the grammar, parser sets, parser sets with all
situations, situations with contexts. The function returns the previously set up debug level. Setting up
a negative debug level results in output of the translation for program dot of the graphic visualization
package graphviz. The parameter should be an integer after implicit integer conversion. The function
will generate exception partype if it is not true.

e set_one_parse (flag). This function sets up a flag whose nonzero value means building only one
translation tree (without any alternative nodes). For an unambiguous grammar the flag does not
affect the result. The function returns the previously set up flag value. The default value of the flag
is 1. The parameter should be an integer after implicit integer conversion. The function will generate
exception partype if it is not true.

8. Predeclared identifiers 41

e set_lookahead (flag). This function sets up a flag of of usage of look ahead in the parser work. The
usage of lookahead gives the best results with the point of view of space and speed. The default value is
1 (the lookahead usage). The function returns the previously set up flag. No usage of the lookahead is
useful sometimes to get more understandable debug output of the parser work (see function set_debug).
The parameter should be an integer after implicit integer conversion. The function will generate the
exception partype if it is not true.

e set_cost (flag). This function sets up building the only translation tree (trees if we set up
one_parse_flag to 0) with minimal cost. For an unambiguous grammar the flag does not affect the
result. The default value is 0. The function returns the previously set up flag value. The default value
of the flag is 0. The parameter should be an integer after implicit integer conversion. The function
will generate exception partype if it is not true.

e set_recovery (flag). This function sets up a flag whose nonzero value means making error recovery
if a syntax error occurred. Otherwise, a syntax error results in finishing parsing (although the syntax
error function passed to parse is called once). The function returns the previously set up flag value.
The default value of the flag is 1. The parameter should be an integer after implicit integer conversion.
The function will generate exception partype if it is not true.

e set_recovery match (n_toks). This function sets up an internal parser parameter meaning how much
subsequent tokens should be successfully shifted to finish error recovery. The default value is 3. The
function returns the previously set up value. The parameter should be an integer after implicit integer
conversion. The function will generate exception partype if it is not true.

e parse (tokens, error_func). This function is the major function of the class. It makes translation
according to the previously set up grammar of input given by the parameter tokens whose value should
be an array of objects of predeclared class token. If the parser recognizes a syntax error it calls the
function given through parameter error_func with six parameters:

index of the token (in array tokens) on which the syntax error occured.

— the error token itself. It may be nil for end of file.

index of the first token (in array tokens) ignored due to error recovery.

— the first ignored token itself. It may be nil for end of file.

index of the first token (in array tokens) which is not ignored after error recovery.

— the first not ignored token itself. It may be nil for end of file.

If the parser works with switched off error recovery (see function set_recovery, the third and fifth
parameters will be negative and forth and sixth parameter will be nil.

The function returns an object of the predeclared class anode which is the root of the abtsract tree
representing the translation of the parser input. The function returns nil only if syntax error was
occurred and error recovery was switched off. The function can generate exception partype if the
parameter types are wrong or exception invtoken decl if any of the input tokens have a wrong code.
The function also can generate exception pmemory if there is no memory for internal parser data.

The call of the class parser itself can generate exception pmemory if there is no memory for internal parser
data.

8. Predeclared identifiers 42

Token. Dino has a predeclared class token. Objects of this class should be the input of the Earley parser
(see function parse in class parser). The result abstract tree representing the translation will have input
tokens as leaves. The class token has one public variable code whose value should be the code of the
corresponding terminal described in the grammar. You could extend the class description e.g. by adding
variables whose values could be attributes of the token (e.g. source line number, name of an identifier, or
value for a number).

Anode. Dino has a predeclared class anode whose objects are nodes of the abtract tree representing the
translation (see function parse of class parser). Objects of this class are generated by the Earley parser.
The class has two public variables name whose value is string representing name of the abstract node as
it given in the grammar and transl whose value is array with abstract node fields as the array elements.
There are a few node types which have special meaning:

e Terminal node which has reserved name $term. The value of the public variable transl for this node
is an object of class token representing the corresponding input token which was an element of the
array passed as a parameter of function parse of function parser.

e Error node which has reserved name $error. This node exists in one exemplar (see description of
variable error_anode) and represents the translation of reserved grammar symbol error. The value
is public variable transl will be nil in this case.

e The empty node which has the reserved name $nil. This node also exists in one exemplar (see
description of variable nil_anode) and represents the translation of a grammar symbol for which
we did not describe a translation. For example, in a grammar rule an abstract node refers for the
translation of a nonterminal for which we do not produce a translation. The value is public variable
of such class object will be nil in this case.

e Alternative node which has the reserved name $alt. It represents all possible alternatives in the
translation of the grammar nonterminal. The value of the public variable transl will be an array with
elements whose values are objects of class anode which represent all possible translations. Such nodes
can be generated by the parser only if the grammar is ambiguous and we did not ask it to produce
only one translation.

Nil_anode and error_anode. There is only one instance of anode which represents empty (nil) nodes.
The same is true for the error nodes. The final variables nil_anode and error_anode correspondingly refer
to these nodes.

Example of Earley parser usage. Let us write a program which transforms an expression into postfix
polish form. Please, read the program comments to understand what the code does. The program should
output string "abcda*+*+" which is the postfix polish form of input string "a+b* (c+d*a)".

// The following is the expression grammar:
var grammar = "E : E ’+> T # plus (0 2)\n\

| T # 0\n\
| error # 0\n\

T : T’ F # mult (0 2)\n\
| F # 0\n\

F: a’ # 0\n\

8. Predeclared identifiers

43

| ’b?’ # 0\n\
| ’c? # 0\n\
| ’a’ # 0\n\
| :() E 7): # 1||;

// Create parser and set up grammar.
var p = parser ();

p.set_grammar (grammar, 1);

// Add attribute repr to token:
ext token { var repr; }
// The following code forms input tokens from string:
var str = "a+b*(c+d*a)";
var i, inp = [#str : nil];
for (i = 0; i < #str; i++) {
inp [i] = token (str[i] + 0);
inp [i].repr = str[il;
}
// The following function output messages about syntax errors
// syntax error recovery:
func error (err_start, err_tok,
start_ignored_num, start_ignored_tok_attr,
start_recovered_num, start_recovered_tok) {
put ("syntax error on token #", err_start,
" (" @ err_tok.code @ ")");
putln o - ignore ", start_recovered_num - start_ignored_num,

" tokens starting with token #", start_ignored_num);

var root = p.parse (inp, error); // parse

// Output translation in polish inverse form
func pr (r) {

var i, n = r.name;

if (n == "$term")
put (r.transl.repr);
else if (n == "mult" || n == "plus") {
for (i = 0; i < #r.transl; i++)
pr (r.transl [il]);
put (n == "mult" ? "x" : "+");
}
else if (n != "$error") {
putln ("internal error");
exit (1);

pr (root);
putln QO;

8. Predeclared identifiers 44

8.3 Predeclared functions

The predeclared functions expect a given number of actual parameters (may be a variable number of pa-
rameters). If the actual parameter number is an unexpected one, exception parnumber is generated. The
predeclared functions believe that the actual parameters (may be after implicit conversions) are of the re-
quired type. If this is not true, exception partype is generated. To show how many parameters the function
requires, we will write the names of the parameters and use brackets [and] for the optional parameters in
the description of the functions.

Examples: The following description
strtime ([format [, time]])

describes that the function can accept zero, one, or two parameters. If only one parameter is given, then
this is parameter format.

If something is not said about the returned result, the function returns the default value nil.

8.3.1 Mathematical functions

The following functions make implicit arithmetic conversion of the parameters. After the conversions the
parameters are expected to be of integer or floating point type. The result is always a floating point number.

e sqrt (x). The function returns the square root of x. The function generates the exception edom if x
is negative.

e exp (x). The function returns e (the base of the natural logarithm) raised to the power of x.

e log (x). The function returns the natural logarithm of x. The function generates the exception edom
if x is negative or may generate syserrors.erange if the value is zero.

e 1logl0 (x). The function returns the decimal logarithm of x. The function generates the exception
edom if x is negative or may generate syserrors.erange if the value is zero.

e pow (x, y). The function returns x raised to the power of y. The function generates exception edom
if x is negative and y is not of integral value.

e sin (x). The function returns the sine of x.
e cos (x). The function returns the cosine of x.

e atan2 (x, y). The function returns the arc tangent of the two variables x and y. It is similar to
calculating the arc tangent of y / x, except that the signs of both arguments are used to determine
the quadrant of the result.

8.3.2 Pattern matching functions

Dino has the predeclared functions which are used for pattern matching. The pattern is described by regular
expressions (regex). The pattern has syntax of extended POSIX (1003.2) regular expressions, i.e. the pattern
has the following syntax:

Regex = Branch {"|" Branch}

8. Predeclared identifiers 45

A regex matches anything that matches one of the branches.
Branch = {Piece}

A branch matches a match for the first piece, followed by a match for the second piece, etc. If the pieces are
omitted, the branch matches the null string.

Piece = Atom ["*" | "+" | "?" | Bound]
Bound = Il{ll Min [ll " [Max]] Il}ll | Il{ll non MaX Il}ll
Min = <unsigned integer between O and 255 inclusive>

Max = <unsigned integer between O and 255 inclusive>

An atom followed by * matches a sequence of 0 or more matches of the atom. An atom followed by + matches
a sequence of 1 or more matches of the atom. An atom followed by ? matches a sequence of 0 or 1 matches
of the atom.

There is a more general construction (a bound) for describing repetitions of an atom. An atom followed by
a bound containing only one integer min matches a sequence of exactly min matches of the atom. An atom
followed by a bound containing one integer min and a comma matches a sequence of min or more matches
of the atom. An atom followed by a bound containing a comma and one integer Max matches at most Max
repetitions of the atom. An atom followed by a bound containing two integers min and max matches a
sequence of min through max (inclusive) matches of the atom.

Atom = "(" Regex ")"
n (ll ll) n

|

| o

| n-~n

| g

| BracketedList

N

NE

I m\g"

NG

OVE

|\

Y

| e

ST

W

| <any pair the first character is \ and the second is any
except for ~.[$()[*+7 >

| <any character except for ~.[$() [*+? >

A regular expression enclosed in () can be an atom. In this case it matches a match for the regular expression
in the parentheses). The atom () matches the null string. The atom . matches any single character. Atoms

and $ match correspondingly the null string at the beginning of a line and the null string at the end of a
line.

8. Predeclared identifiers 46

An atom which is \ followed by one of the characters ~. [$()|*+7{\ matches that character taken as an
ordinary character. Atom which is \ followed by any other character matches the second character taken as
an ordinary character, as if the \ had not been present. So you should use \\ for matching with a single \.
An atom which is any other single character matches that character. It is illegal to end a regular expression
with \. There is an exception which is not described by the atom syntax. An { followed by a character other

than a digit or comma is an ordinary character, not the beginning of a bound and matches the character {.
BracketedList = "[" List "]"
List = FirstChar ["-" Char] {Char ["-" Char]}

FirstChar = <any character except for ~ - and]>
| CollatingElement

Char = FirstChar

CollatingElement = "[:" Class ":]"

Class = "alnum"
| "alpha"
| "blank"
| "ctrl"

| "digit"
| "graph"
| "lower"
| "print"
| "punct"
| "space"
| "upper"
| "xdigit"

An atom can be a bracket expression which is a list of characters enclosed in []. Usually it is used to
match any single character from the list. If the list begins with -, it matches any single character (but see
below) not in the list. If two characters in the list are separated by -, this is shorthand for the full range of
characters between those two (inclusive) in the collating sequence of ASCII codes, e.g. [0-9] matches any
decimal digit. It is illegal for two ranges to share an endpoint, e.g. a-c-e.

There are exceptions which are not described by the atom syntax which is used to include a literal] in the
list by making it the first character (following a possible ~). To include a literal -, make it the first or the
last character, or the second endpoint of a range. As you can see from the syntax, all special characters
(except for [) described in an atom lose their special significance within a bracket expression.

A collating element is a name of a character class enclosed in [: and :]. It denotes the list of all characters
belonging to that class. Standard character class names are:

alnum digit punct
alpha graph space
blank lower upper

cntrl print xdigit

8. Predeclared identifiers 47

These names stand for the character classes defined in the ANSI C include file ctype.h. There is an exception
not described by the syntax: a character class can not be used as an endpoint of a range.

There is an extension of regular expressions used by DINO and of ones defined in Posix 1003.2: no particular
limit is imposed on the length of the regular expression.

There are the following Dino pattern matching functions:

e match (regex, string). The function searches for the matching regular expression regex in string.
The both parameters should be strings after their implicit string conversion. The matching is made
according to the standard POSIX 1003.2: The regular expression matches the substring starting earliest
in the string. If the regular expression could match more than one substring starting at that point,
it matches the longest. Subexpressions also match the longest possible substrings, subject to the
constraint that the whole match be as long as possible, with subexpressions starting earlier in the
regular expression taking priority over ones starting later. In other words, higher-level subexpressions
take priority over their component subexpressions. Match lengths are measured in characters, not
collating elements. A null string is considered longer than no match at all. If there is no matching, the
function returns the value nil. Otherwise, the function returns a new mutable vector of integers. The
length of the vector is 2 * (N + 1) where N is the number of atoms which are regular expressions in
parentheses. The first two elements are the index of the first character of the substring corresponding
to the whole regular expression and the index of the last character matched plus one. The subsequent
two elements are the index of the first character of the substring corresponding to the first atom in
the regular expression (the atoms are ordered by their open parentheses) and the index of the last
character plus one, and so on. If there is no matching with a regular expression in parentheses, the
corresponding vector elements will have negative values. Example: The program

println (match ("()(a)((a)(a))", "baaab"));

outputs
(1, 4, 1, 1, 1, 2, 2, 4, 2, 3, 3, 4]

e gmatch (regex, string[, flagl). The function searches for different occurrences of regular expres-
sion regex in string. Both parameters should be strings after their implicit string conversion. The
third parameter is optional. If it is present, it should be integer after implicit integer conversion. If its
value is nonzero, the substrings matched by regexp can be overlapped. Otherwise, the substrings are
never overlapped. If the parameter is absent, the function behaves as its value were zero. The function
returns a new mutable vector of integers. The length of the vector is 2 * N where N is number of
the found occurrences. Pairs of the vector elements correspond to the occurrences. The first element
of the pairs is index of the first character of substring corresponding to all regular expression in the
corresponding occurrences and the second element is index of the last character plus one. If there is
no one occurrence, the function returns nil. Example: The program

println (gmatch ("aa", "aaaaa"));
println (gmatch ("aa", "aaaaa", 1));

outputs

[0, 2, 2, 4]
[0, 2, 1, 3, 2, 4, 3, 5]

8. Predeclared identifiers 48

sub (regex, string, subst). The function searches for substrings matching the regular expression
regex in string. All parameters should be string after implicit string conversion. If there is no
matching, the function returns the value nil. Otherwise, the function returns a new mutable vector
of characters in which the first substring matched has been changed to the string subst. Within the
replacement string subst, the sequence \n, where n is a digit from 1 to 9, may be used to indicate the
text that matched the n’th atom of the regex in parentheses. The sequence \0 represents the entire
matched text, as does the character & .

gsub (regex, string, subst). The function is analogous to the function sub except for the function
searches for all non-overlapping substrings matched with the regular expression and returns a new
mutable vector of characters in which all matched substrings have been changed to the string subst.

split (string [, regex]). The function splits string into non-overlapped substrings separated
by strings matching the regular expression. All parameters should be strings after implicit string
conversion. If the second parameter is omitted the value of the predeclared variable split_regex is
used instead of the second parameter value. In this case the function may generate the exception
invenvar (corrupted value of a predeclared variable). The function returns a new mutable vector with
elements which are the separated substrings. If the regular expression is the null string, the function
returns a new mutable vector with elements which are strings each containing one character of string.
Examples: The program

println (split ("aaa bbb ccc ddd"));
outputs

["aaa", "bbb", "ccc", "ddd"]
The program

println (split ("abcdef", ""));
outputs

["a", "b“, "C", "d", "e", llfll]

If the regular expression is incorrect, the functions generate one of the following predeclared exceptions (see

predeclared classes):

ebrack. Regular expression has unmatched bracket.
invregexps.erange. Invalid use of range in regular expression.

ectype. Unknown character class name in regular expression.

eparen. Regular expression has unmatched parenthesis.

esubreg. Invalid back reference to a subexpression in regular expression.
eend. Non specific error in regular expression.

eescape. Invalid escape sequence in regular expression.

ebadpat. Invalid use of pattern operators in regular expression.

esize. Compiled regular expression is too big.

espace. No memory for the regular expression function to work.

8. Predeclared identifiers 49

8.3.3 File functions

Dino has some predeclared functions to work on files and directories.

Functions for access to file/directory information The following predeclared functions can be used
for accessing file or directory information. The functions may generate an exception declared in the class
syserror (e.g. eaccess, enametoolong, enfile and so on) besides the standard partype, and parnumber.
The functions expect one parameter which should be a file instance (see the predeclared class file) or the
path name of a file represented by a string (the functions make implicit string conversion of the parameter).
The single exception to this is isatty which expects a file instance.

e ftype (fileinstance or_filename). The function returns one the following characters:

— 7. A regular file.

— ’d’. A directory.

— ’L’. A symbolic link.

— ’c’. A character device.
— ’b’. A block device.

— ’p’. A fifo.

— ?87. A socket.

Under some OSes the function never returns some of the characters (e.g. 'c’ or ’b’).

e fun (fileinstance or _filename). The function returns new string representing name of owner of
the file (directory). Under some OSes the function may return the new string "Unknown" if there is no
notion "owner” in the OS file system.

e fgn (fileinstance or_filename). Analogous to the previous function except for it returns a new
string representing name of the group of the file (directory). Under some OSes the function may return
the new string "Unknown" if there is no notion ”group” in the OS file system.

o fsize (fileinstance_or_filename). The function returns an integer value which is the length of the
file in bytes.

e fatime (fileinstance_or_filename). The function returns integer value which is time of the last
access to the file (directory). The time is measured in seconds since the fixed time (usually since
January 1, 1970). See also time functions.

e fmtime (fileinstance or _filename). Analogous to the previous functions but returns the time of
the last modification.

e fctime (fileinstance or _filename). Analogous to the previous functions but it returns the time
of the last change. Here ‘change’ usually means changing the file attributes (owner, modes and so on),
while ‘modification” means usually changing the file itself.

e fumode (fileinstance or _filename). The function returns a new string representing the rights of
the owner of the file (directory). The string may contain the following characters (in the following
order if the string contains more than one character):

— ’s°’. Sticky bit of the file (directory).

8. Predeclared identifiers 50

— ’r’. Right to read.
— ’w’. Right to write.

— ’x’. Right to execute.

e fgmode (fileinstance_or_filename). Analogous to the previous function except for the fact that it
returns information about the file (directory) group user rights and that the function never returns a
string containing the character ’s’.

e fomode (fileinstance or_filename). Analogous to the previous function except for the act that it
returns information about the rights of all other users.

e isatty (fileinstance). The function returns 1 if the file instance given as a parameter is an open

file connected to a terminal and 0 otherwise.

The following functions can be used to change rights of usage of the file (directory) for different users. The
function expects two strings (after implicit string conversion). The first one is the path name of the file
(directory). The second one is the rights. For instance, if the string contains a character 'r’, this is right to
read (see characters used to denote different rights in the description of the function fumode). The functions
always return the value nil.

e chumod (path, mode). The function sets up rights for the file (directory) owner according to the given
mode.

e chgmod (path, mode). Analogous to the previous function except for the fact that it sets up rights
for the file (directory) group users and that the function ignores the character ’s’.

e chomod (path, mode). Analogous to the previous function except for the fact that it sets up rights
for all other users.

Functions for work with directories The following functions work with directories. The functions may
generate an exception declared in class syserror (e.g. eaccess, enametoolong, enotdir and so on) besides
the standard partype, parnumber.

e readdir (dirpath). The function makes implicit string conversion of the parameter value which
should be a string (directory path). The function returns a new mutable vector with elements which
are strings representing names of all files and sub-directories (including "." and ".." for the current
and parent directory respectively) in given directory.

e mkdir (dirpath). The function creates a directory with the given name represented by a string (the
parameter value after implicit string conversion). The directory has read/write/execute rights for all.
You can change it with the aid of the functions ch*mod.

e rmdir (dirpath). The function removes the directory given by a string which is parameter value after

implicit string conversion.
e getcwd (). The function returns a new string representing the full path of the current directory.

e chdir (dirpath). The function makes the directory given by dirpath (which should be a string after

implicit string conversion) the current directory.

8. Predeclared identifiers 51

Functions for work with files. The following functions (besides input/output functions) work with OS
files. The functions may generate an exception declared in the class syserror (e.g. eaccess, enametoolong,
eisdir and so on) besides the standard partype, and parnumber. The function rename can be used for
renaming a directory, not only a file.

e rename (old_path, new_path). The function renames the file (directory) given by its path name.
The old and new names are given by parameter values which should be strings after implicit string

conversion.

e remove (file_path). The function removes the OS file given by its path name. The file path name
should be a string after implicit string conversion.

e open (file_path, mode). The function opens the file for work in the given mode, creates a new class
file instance, associates the opened file with the instance, and returns the instance. The parameter
values should be strings after implicit string conversions. The first parameter value is a string repre-
senting the file path. The second parameter value is string representing the mode for work with the
file (for all possible modes see the ANSI C function fopen documentation). All work with an opened
file is made through the file instance.

e close (fileinstance). The function closes a file opened by the function open. The file is given by
the class file instance. The function also removes all association of the instance with the file.

e flush (fileinstance). The function flushes any output that has been buffered for the opened file
given by the class file instance.

e popen (command, mode). The function starts the shell command given by the first parameter value
(which should be a string after implicit string conversion), creates a pipe, creates a new class file
instance, associates the pipe with the instance, and returns the instance. Writing to such a pipe
(through the class file instance) writes to the standard input of the command. Conversely, reading
from the pipe reads the command’s standard output. After implicit string conversion the second
parameter value should be the string ”r” (for reading from the pipe) or ”w” (for writing to the pipe).
The pipe should be closed by the function pclose.

e pclose (fileinstance). The function waits for the command connected to a pipe to terminate. The
pipe is given by the class file instance returned by the function popen. The function also removes
the association of the instance with the pipe.

e tell (fileinstance). The function returns the current value of the file position indicator for the file
(opened by function open) given by the class file instance.

e seek (fileinstance, offset, whence). The function sets up the current file position indicator for
the file (opened by function open) given by the class file instance. The position is given by offset
which should be an integer after implicit arithmetic conversion and whence which should be a string
after implicit string conversion. The first character of the string should be ’s?, ’c’, or e’ (these
characters mean that the offset is relative to the start of the file, the current position indicator, or the
end-of-file, respectively).

File output functions The following functions are used to output something into opened files. All
the functions always return the value nil. The functions may generate an exception declared in the class
syserror (e.g. eio, enospc and so on) besides the standard partype, and parnumber.

8. Predeclared identifiers 52

e put (...). All parameters should be strings after implicit string conversion. The function outputs all
strings into the standard output stream.

e putln (...). The function is analogous to the function put except for the fact that it additionally
outputs a new line character after output of all the strings.

e fput (fileinstance, ...). The function is analogous to the function put except for the fact that it
outputs the string into an opened file associated with a class file instance which is the first parameter
value.

e fputln (fileinstance, ...). The function is analogous to function fput except for the fact that it

additionally outputs a new line character after output of all the strings.

e putf (format, ...). The first parameter should be strings after implicit string conversion. The
function outputs the rest of parameters according to the format. The number of the rest parameters
should be exactly equal to the conversions (including parameterized widths and precisions) in the for-
mat. Otherwise, exception parnumber will be generated. The types of the parameter should correspond
to the corresponding conversion specifier (or to be integer for parameterized widths and precisions). If
it is not true, exception partype will be generated. The format is subset of one of standard C function
printf and has the following syntax:

format : <any character except %>
| *%’ flags [width] [precision]

conversion_specifier

flags :
| flag
flag . J#) |)07 | P I)) | I
width : ’*’ | <decimal number starting with non-zero>
precision : ’.’ [’x’ | <decimal number>]
conversion_specifier : ’d’ | 2o’ | ’x’ | ’X’
I re? | E? | 2f I)g;
I 3 | ’c? | ’g? | ;%;

If the format syntax is wrong, exception invfmt is generated.

Flag '#’ means that the value should be converted into an alternative form. It can be present only
for conversion specifiers 'o’, 'x’, ’X’, ’e’, 'E’, 'f’, ’g’, and 'G’. If the flag is used for conversion specifier
’0’, the output will be prefixed by ’0’. For 'x’ and X’ the output will be prefixed by '0x’ and '0X’
correspondingly. For conversions ’e’, 'E’, 'f’) ’g’. and 'G’ the output will always contain a decimal
point. For conversions ’g’ and ’G’ it also means that trailing zeros are not removed from the output
as they would be without the flag. The following code using flag ’#’ in format

putf ("->%#o Y#x Y#.0e %#.0f Y#g\n", 8, 10, 2., 3., 4.);
will output

->010 Oxa 2.e+00 3. 4.00000

8. Predeclared identifiers 53

Flag ’0’ means that the output value will be zero padded on the left. If both flags 0’ and ’-’ appear,
the flag ’0’ is ignored. It is also ignored for conversions 'd’, ’0’, ’x’, and "X’ if a precision is given. The

9

flag is prohibited for conversions 'c’ and ’s’. The following code using flag ’0’ in format

putf ("->%04d %04x %09.2e %05.2f 7%05.2g\n", 8, 10, 2., 3., 4.);
will output

->0008 000a 02.00e+00 03.00 00004

Flag - means that the output will be left adjusted on the field boundary. (The default is right
justification). Flag -” overrides flag ’0’ if the both are given. The following code using flag -’ in format

putf ("->%-04d %-04x %-09.2e %-05.2f %-05.2g\n",
8, 10, 2., 3., 4.);

will output
->8 a 2.00e+00 3.00 4

Flag ’ > means that the output of a signed number will start with a blank for positives number. The
flag can be used only for conversions 'd’, ’e’, 'E’, ’f’, ’g’, and ’G’. If both flags ’ ’ and '+’ appear, the

b

flag ’ ’ is ignored. The following code using flag ’ ’ in format
putf ("->% d % .2e % .2f % .2g\n", 8, 2., 3., 4.);
will output

-> 8 2.00e+00 3.00 4

Flag '+’ means that the output of a signed number will start with a plus for positives number. The
flag can be used only for conversions ’d’, ’e’, 'E’, ’f’, ’g’, and ’G’. Flag '+’ overrides flag ’ ’ if both are
given. The following code using flag '+’ in format

putf ("->Y+d Y+.2e %+.2f %+.2g\n", 8, 2., 3., 4.);
will output
->+8 +2.00e+00 +3.00 +4

The width defines a minimum width of the output value. If the output is smaller, it is padded with
spaces (or zeros — see flag '0’) on the left (if flag -’ is used) or right. The output is never truncated.
The width should be no more than maximal integer value, otherwise exception invfmt is generated.
The width can be given as a parameter of integer type if "*’ is used. If the value of width given by
the parameter is negative, flag -’ is believed to be given and the width is believed to be equal to zero.

The following code using width in format
putf ("->%5d %054 %-5d %*d J*d<-\n", 8, 9, 10, 5, 8, -5, 10);
will output

-> 8 00009 10 8 10 <-

8. Predeclared identifiers 54

The precision is prohibited for conversions ’c’. If the number after the period is absent, its value will

* is used after the period.

be zero. The precision can be given as a parameter of integer type if
If the value of precision given by the parameter is negative, its value is believed to be zero too. For
conversions 'd’, ’0’, 'x’, and "X’ the precision means minimum number of output digits. For conversions
‘e’, 'K, and ’f’ it means the number of digits to appear after the decimal point. For ’g’ and G’ it
means the maximum number of significant digits. For ’s’ it means the maximum number of characters

to be output from a string. The following code using precision in format

putf ("->%.d %.0d %.5d %.0f %.0e %.2g<-\n",
8, 8, 9, 2.3, 3.53);
putf ("->%.2s %.0d %.*d %.*d<-\n", "long", O, 5, 8, -5, 8);

will output

->8 8 00009 2 2e+00 3.5<-
->lo 00008 8<-

Conversion 'd’ should be used to output integer. The default precision is 1. When 0 is output with an
explicit precision 0, the output is empty.

Conversions ’0’, 'x’, and X’ should be used to output an integer value as unsigned in octal and
hexadecimal form. The lower case letters abcdef are used for 'x’ and the upper case letters ABCDEF
are used for 'X’. The precision gives the minimum number of digits that must appear. If the output
value requires fewer digits, it is padded on the left with zeros. The default precision is 1. When 0 is
output with an explicit precision 0, the output is empty.

Conversion ’f” should be used to output floating point values. The output value has a form [-]ddd.ddd
where the number of digits after the decimal point is given by the precision specification. The default
precision value is 6. If the precision is explicitly zero, no decimal-point character appears.

Conversions e’ and 'E’ should be used to output floating point values with an exponent in form
[-]1d.ddd [e|E] [+|-1dd. There is always one digit before the decimal-point. The number of digits after
the decimal point is defined by the precision. The default precision value is 6. If the precision is zero,
no decimal-point appears. Conversion 'E’ uses the letter E (rather than e) to introduce the exponent.
The exponent always contains at least two digits. If the exponent value is zero, the exponent is output
as 00.

Conversions ’g’ and ’G’ should be used to output floating point values in style ’f” or ’e’ (or ’E’ for
conversion 'G’). The precision defines the number of significant digits. The default value of the precision
is 6. If the precision is zero, it is treated as 1. Conversion ’e’ is used if the exponent from the conversion
is less than -4 or not less than the precision. Trailing zeros are removed from the fractional part of the
output. If all fractional part is zero, the decimal point is removed too.

Conversion ¢’ should be used to output a character value.
Conversion ’s’ should be used to output strings.
Conversion '%’ should be used to output %.
The following code using different conversions in format
putf ("=>%% %ec %hs %A %ho %x %X<-\n",
’c’, "string", 7, 8, 20, 20);
putf ("->%f<-\n", 1.5);

putf ("->%e %E %g %G %g %G<-\n",
2.8, 2.8, 3.7, 3.7, 455555555.555, 5.9e-5);

8. Predeclared identifiers 55

will output

->%, ¢ string 7 10 14 14<-
->1.500000<-
->2.800000e+00 2.800000E+00 3.7 3.7 4.55556e+08 5.9E-05<-

e fput (fileinstance, format, ...). The function is analogous to the function putf except for the
fact that it outputs the string into an opened file associated with a class file instance which is the
first parameter value.

e print (...). The function outputs all parameter values into standard output stream. The function
never makes implicit conversions of the parameter values. The parameter values are output as they
could be represented in Dino itself (e.g. character ’c’ is output as ’c’, vector [’a’, ’b’, ’c’] is
output as "abc", vector [10, 20] as [10, 20] and so on). As you know some values (functions, classes,
block instances, class instances, threads) are not represented fully in DINO. Such values are represented
schematically. For example, the output func f {}.g(unique number) would mean function f in the
call of function (or class) g with the given unique number and function g is in the instance of the
implicit block covering the whole program. For the function g, output would look simply like func g
because there is only one instance of the implicit block covering the whole program. Output for an
instance of the class c in the function f looks like instance {}.f(unique number).c(unique number).
Output for a block instance of the function f looks like stack {}.f(unique number). Output for a
thread whose thread-function t is declared in the function £ would look like thread unique_number
{}.f (unique number) .t (unique _number).

e println (...). The function is analogous to the function print except for the fact that it additionally
outputs new line character after output of all parameters.

e fprint (fileinstance, ...). The function is analogous to the function print except for the fact
that it outputs the parameters into an opened file associated with a class file instance which is the
value of first parameter.

e fprintln (fileinstance, ...). The function is analogous to function fprint except for the fact
that it additionally outputs a new line character after the output of all the parameters.

File input functions The following functions are used to input something from opened files. All the
functions always return the value nil. The functions may generate an exception declared in the class syserror
(e.g. eio, enospc and so on) or eof besides the standard partype, and parnumber.

e get (). The function reads one character from standard input stream and returns it. The function
generates the exception eof if the function tries to read the end of file.

e getln (). The function reads one line from standard input stream and returns it as a new string. The
end of line is the newline character or end of file. The returned string does not contain the newline
character. The function generates the exception eof only when the file position indicator before the
function call stands exactly on the end of file.

e getf ([1n_flag]). The function reads the whole standard input stream and returns it as a new string.
The function generates the exception eof only when the file position indicator before the function call
stands exactly on the end of file. The function has an optional parameter which should be integer after

implicit integer conversion. If the parameter value is nonzero, the function returns a vector of strings.

8. Predeclared identifiers 56

Otherwise it behaves as usually. Each string is a line in the input stream. The strings do not contain
the newline character.

e fget (fileinstance). The function is analogous to function get except for the fact that it reads
from an opened file associated with the class file instance which is the parameter’s value.

e fgetln (fileinstance). The function is analogous to the function getln except for the fact that it
reads from an opened file associated with a class file instance which is the parameter value.

o fgetf (fileinstance [, 1n_flag]). The function is analogous to the function getf except for the
fact that it reads from an opened file associated with a class file instance which is the parameter’s

value.

e scan (). The functions reads a character, integer, floating point number, string, vector, or table and
returns it as the result. The input values should be represented in the file as the ones in the Dino
language (except for the fact that there should be no identifiers in the input values and there should
be no operators in the values, although the signs + and - are possible in an integer or floating point
represenation). The table or vector should contains only values of types mentioned above. The values
in the file can be separated by white characters. If there is an error (e.g. unbalanced brackets in a
vector value) in the read value representation the function generates the exception invinput. The
functions generates the exception eof if only white characters are still unread in the file.

e scanln (). The function is analogous to the function scan except for the fact that it skips all characters
until the end of line or the end of file after reading the value. Skipping is made even if the exception
invinput is generated.

e fscan (fileinstance). The function is analogous to the function scan except for the fact that it
reads from an opened file associated with a class file instance which is the parameter’s value.

e fscanln (fileinstance). The function is analogous to the function scanln except for that it reads
from an opened file associated with a class file instance which is the parameter value.

8.3.4 Time functions
The following functions can be used to get information about real time.

e time (). The function returns the time in seconds since the fixed time (usually since January 1, 1970).

e strtime ([format [, timel]l). The function returns a string representing the time (integer repre-
senting time in seconds since the fixed time) according to the format (string). If the format is not
given, the value of variable time_format is used. In this case if the value of time_format is corrupted
(it is not a string), the function generates exception invenvar. If the time is not given, the current
time is used. The format is the same as in C library function strftime. Here is an extraction from
the OS function documentation. The following format specifiers can be used in the format:

%a - the abbreviated weekday name according to the current locale.

%A - the full weekday name according to the current locale.

%%b - the abbreviated month name according to the current locale.
— %#%B - the full month name according to the current locale.

— Whe - the preferred date and time representation for the current locale.

8. Predeclared identifiers 57

— %%d - the day of the month as a decimal number (range 01 to 31).

— %%H - the hour as a decimal number using a 24-hour clock (range 00 to 23).
— %4I - the hour as a decimal number using a 12-hour clock (range 01 to 12).
— %hj - the day of the year as a decimal number (range 001 to 366).

— %%m - the month as a decimal number (range 01 to 12).

— %/%M - the minute as a decimal number.

— %%p - either ‘am’ or ‘pm’ according to the given time value, or the corresponding strings for the

current locale.
— %%S - the second as a decimal number.

— %%U - the week number of the current year as a decimal number, starting with the first Sunday as
the first day of the first week.

— %%&W - the week number of the current year as a decimal number, starting with the first Monday
as the first day of the first week.

— %%w - the day of the week as a decimal, Sunday being 0.

— %%x - the preferred date representation for the current locale without the time.
— %%X - the preferred time representation for the current locale without the date.
— %Ay - the year as a decimal number without a century (range 00 to 99).

— %hY - the year as a decimal number including the century.

— WhZ - the time zone or the name or an abbreviation.

— %%% - a literal ‘%’ character.

8.3.5 Functions for access to process information

There are Dino predeclared functions which are used to get information about the current OS process

(the Dino interpreter which executes the program). Each OS process has unique identifier and usually OS

processes are called by a concrete user and group and are executed on behalf of the concrete user and group

(so called effective identifiers). The following functions return such information. On some OSes the function

may return string ”Unknown” as a name if there are notions of user and group identifiers.

getpid (). The function returns an integer value which is the process ID of the current OS process.
getun (). The function returns a new string which is the user name for the current OS process.

geteun (). The function returns a new string which is the effective user name for the current OS
process.

getgn (). The function returns a new string which is the group name for the current OS process.

getegn (). The function returns a new string which is the effective group name for the current OS
process.

getgroups (). The function returns a new vector of strings (possibly the empty vector) representing
supplementary group names for the current OS process.

8. Predeclared identifiers 58

8.3.6

Miscellaneous functions

There are the following miscellaneous functions:

max (v1, v2, ...). The function searches for and returns the maximal value in all of its parameters.
The parameters should be of integer or floating point type after implicit arithmetic conversion. So the
function can return an integer or floating point number depending on the type of the maximal value
after the conversion.

min (v1, v2, ...). The function is analogous to the previous function, but searches for and returns
the minimal value.

tolower (str). The function expects that the parameter str (after implicit string conversion) is a
string. The function returns new string str in which upper case letters are changed to the corresponding
lower case letters.

toupper (str). The function expects that the parameter str (after implicit string conversion) is
a string. The function returns the new string str in which lower case letters are changed to the
corresponding upper case letters.

trans (str, what, subst). The function transliterates charactes in a string. The function expects
that the parameters str (after implicit string conversion), what, and subst are strings. The function
returns the new string str in which its characters which are present in what are changed to the
corresponding characters in <\tt>subst<\tt>. The last two strings should have the same length. The
second string may contain more than one occurence of a character. In this case the last correspondence
is taken.

eltype (vect). The function expects that the parameter value is a vector. The function returns nil
if the vector is heterogenous, otherwise the function returns the type of the vector elements (type of
nil if the vector is empty).

keys (tab). The function expects that the parameter value is a table. The function returns a new
mutable vector containing all the keys in the table. The order of keys in the vector is undefined.

context (par). The function returns the context (see section Declarations and Scope Rules) repre-
sented by a block instance or an object for the given parameter value which should be a function, a
class, a thread, a block instance, or an object.

inside (parl, par2[, flag]). The goal for function usage is to check that something is declared
inside something other. If the third parameter value after implicit integer conversion is given and
nonzero, it is checked with taking contexts into account. The second parameter value should be a
function or a class. The first parameter value should be a function, a class, an object, or a block
instance. In the first three cases, they define corresponding a function, class, or block. If the function,
class, or block defined by the first parameter is declared inside the function or class given by the second
parameter, the function inside returns 1. The function inside also returns 1 if the function or class
defined by the first parameter is the same as the function or class given by the second parameter.
Otherwise the function inside returns 0. The following example illustrates the difference between
checking with taking contexts into account and without it.

class ¢ () {
class subc () {

Predeclared identifiers 59

}
inside (¢ ().subc (), ¢ () .subc);
inside (¢ ().subc (), ¢ ().subc, 1);

The first call of inside returns 1, while the second one returns 0.

e subv (vect, index[, lengthl). The function is used to extract a slice of vector elements. The first
parameter value should be a vector after implicit string conversion. The second and third parameter
values should be integers after implicit integer conversion. The function extracts only an element or
the part of the slice existing in the vector (so you can use any values of the index and the length). If
index is negative, it is considered to be equal to zero. If the length is negative, the slice will finish on
the vector end. The function returns a new vector which is the slice. The result vector is immutable
only when the original vector is immutable.

e del (vect, index[, length]) or del (tab, key). The first form of the function is used to remove
the vector element or a slice of vector elements from the mutable vector vect. The second and the
third parameter values should be integers after implicit integer conversion. The function removes only
an element or the part of the slice existing in the vector (so you can use any values of the index and
the length). If index is negative, it is considered to be equal to zero. If the length is negative, the
slice will finish on the vector end. The second form of the function is used to remove the element (if it
exists) with the given key from the mutable table. The function generates the exception immutable if
we are trying to remove from an immutable vector or table. The function returns the modified vector.

e ins (vect, el[, index]). The function inserts the element given by the second parameter into the
vector given by the first parameter on the place given by the third parameter. If the third parameter
is not given it is believed to be zero. The third parameter should be an integer after implicit integer
conversion. If the third parameter is negative or equal to or greater than the vector length, the element
is inserted at the end of the vector. The function generates the exception immutable if we are trying
to insert into an immutable vector. The function returns the modified vector.

e insv (vect, vect[, index]). The function is analogous to the function ins but it is used for
insertion of all vector elements into the vector given as the first parameter. So the second parameter
value should be a vector. The function returns the modified vector.

e rev (vect). The function returns reversion of the given vector.

e cmpv (vect, vect). The function makes implicit string conversion of the parameter values. After
that, the parameter values should be vectors whose first corresponding equal elements should have
the same type (character, integer, or floating point type). The first corresponding unequal elements
should have the same type too (the remaining elements can have different type). As usual, if this is
not true, exception partype is generated. The function returns 1 if the first unequal element value
of the first vector is greater than the corresponding element in the second vector, -1 if less, and 0 if
the all corresponding vector elements are equal. If the first vector is a prefix of the second vector, the
function returns -1. If the second vector is a prefix of the first vector, the function returns 1, so it is
in fact generalized lexicographical order.

e sort (vect[, compare_function]). The function returns a new sorted vector. The original vector
given as the first parameter value should be a homogeneous vector whose elements are of character,
integer, or floating point type. If the second parameter is not given, standard arithmetic order (see
comparison operators) is used. To use special ordering, use the second parameter which should be a

9. Appendix A. Syntax of Dino 60

function which compares two elements of the vector and returns a negative integer if the first parameter
value (element) is less than the second one, a positive integer if the first parameter value is greater
than the second one, and zero if they are equal.

e exit (code). The function finishes the work of the interpreter with the given code which should be
an integer value after implicit integer conversion.

e gc (). The function forces garbage collection and heap compaction. Usually the Dino interpreter itself
invokes garbage collection when there is no more free memory.

e system (command). The function executes the command given by a string (the parameter value) in
the OS command interpreter. Besides standard exceptions parnumber and partype the function may
generate exceptions noshell and systemfail.

e srand ([seed]). The function sets the parameter value (after implicit integer conversion) as the seed
for a new sequence of pseudo-random integers to be returned by rand. These sequences are repeatable
by calling srand with the same seed value. If the parameter is not given, the seed will be the result of
calling function time.

e rand (). The function returns a pseudo-random integer value. If the function srand was not called
before, 1 will be used as the seed value.

e sput (...), sputln (...), sputf (format, ...) The functions are analogous to functions put,
putln, print, and println but they return the result string instead of output of the formed string into
the standard output stream.

e sprint (...), sprintln (...). The functions are analogous to functions print and println but they
return the result string instead of output of the formed string into the standard output stream.

9 Appendix A. Syntax of Dino

Expr = Expr "?" Expr ":" Expr
Expr "||" Expr
Expr "& & " Expr
Expr in Expr

Expr "|" Expr
Expr """ Expr
Expr "& " Expr
Expr "==" Expr
Expr "!=" Expr
Expr "===" Expr

|

|

|

|

|

|

|

|

|

| Expr "!==" Expr
| Expr "<" Expr

| Expr ">" Expr

| Expr "<=" Expr
| Expr ">=" Expr
| Expr "<<" Expr
| Expr ">>" Expr
| Expr ">>>" Expr
| Expr "@" Expr

|

Expr "+" Expr

9. Appendix A. Syntax of Dino

61

Expr "-" Expr
Expr "x" Expr
Expr "/" Expr
Expr "%" Expr

"' Expr

"+" Expr

"-" Expr

"~ Expr

"#" Expr

final Expr

new Expr
Designator

INTEGER
FLOATINGPOINTNUMBER
CHARACTER

nil

"(" Expr ")"

Call

"[" ElistPartsList "]"
"{" ElistPartsList "}"
STRING

char

int

float

hide

hideblock

vector

table

func

thread

class

func "(" ")"

char "(" Expr ")"
int " (" Expr ")"
float "(" Expr ")"
vector "(" Expr ["," Expr]
table "(" Expr ")"
thread "(" ")"
class "(" ")"

type

type "(" Expr ")"
func "(" Expr ")"
thread "(" Expr ")"

class u(n EXPI‘ u)n

Designator = DesignatorOrCall "["

DesignatorOrCall "{"

DesignatorOrCall "."
IDENT

lI)Il

EXPI‘ u]u
EXPI‘ n}u

IDENT

[
| DesignatorOrCall ActualParameters
I
I

9. Appendix A. Syntax of Dino

62

ElistPartsList = [Expr [":" Expr] {"," Expr [":" Expr] }]

DesignatorOrCall = Designator
| Call

Call = Designator ActualParameters
ActualParameters = "(" [Expr { "," Expr } 1 ")"
VarParList = VarPar { "," VarPar }
VarPar = [final] IDENT ["=" Expr]

Stmt = ExecutiveStmt
| Declaration

Assign = "="
Wzt
n/=n
noy=n
rpr—t
ng="
neg=n
nS =t
n">>>="
ng =n

ExecutiveStmt = ";"

Designator Assign Expr ";"
Designator ("++" | "-=") ;v

("++" | "--") Designator ";"
Designator ActualParameters ";"

if "(" Expr ")" Stmt [else Stmt]

for "(" Stmt ForGuardExpr ";" Stmt ")" Stmt
for "(" Designator in Expr ")" Stmt

break ";"

continue ";"

return [Expr] ";"
throw Expr ";"

wait " (" Expr ")" Stmt
BlockStmt

TryBlockStmt

ForGuardExpr = [Expr]
BlockStmt = Block

TryBlockStmt = try Block { Catch }

10.

Appendix B. Implementation

63

10

Catch = catch "(" ExceptClassList ")" Block
ExceptClassList = Expr { "," Expr }

Declaration = VarDeclarations
| AccessClause
| ExternDeclarations
| FuncClassExtDeclaration
| IncludeDeclaration

VarDeclarations = var VarParList ";"

ExternDeclarations = extern ExternItem { "," ExternItem } ";"

FuncClassExtDeclaration = Header Block

AccessClause = (public | private | friend) AccessList ";"
AccessList = IDENT { "," IDENT }

IncludeDeclaration = include ["+"] STRING ";"

ExternItem = IDENT
| IDENT n (u ||) "

Header = [final] FuncThreadClass IDENT FormalParameters
| ext IDENT

FuncThreadClass = func
| thread
| class
FormalParameters = "(" [VarParList] ")"
| n (ll VarParLiSt nonon - n u) n
| n(u n'.‘n u)u
Block = "{" StmtList "}"

StmtList = { Stmt }

Program = StmtList

Appendix B. Implementation

DINO(1) User Manuals

NAME

DINO(1)

10. Appendix B. Implementation

64

SYNOPSI

DESCRIPTION

OPTIONS

dino - the interpreter of the programming language DINO

S

dino

[

-s -h size -Idirname -Lpath -p] (-c program | program-file)

dino-program-arguments

dino interprets a program in the DINO programming language. The pro-

gram file (and include files) must have the suffix .d

The

description of DINO language is in the report of the Programming

Language DINO.

The options which the DINO interpreter recognizes are:

-Cc program

Execute the Dino program given on the command line as the argu-

ment.

-h number

Determine the size of the heap chunks used by the DINO inter-
preter. The size can be given in bytes (e.g. 32000), in kilo-
bytes (e.g. 64k), or in megabytes (e.g. 1m). The default size
is 1 Megabyte. Initially, the Dino interpreter creates one
chunk. It allocates one additional chunk (as rule of the same
size) whenever there is no additional memory after garbage col-

lection.

Output some statistics of interpreter work into stderr. Statis-
tics contain the maximal heap size, number of heap chunks, and
number of collisions in hash tables which are used for the
implementation of DINO tables.

-Idirname

Define the directory in which Dino include files will be
searched for. The order of searching in directories given with
this option is the same as the one on the command line.

-Ldirname

Define where to serach for external libraries (if shared or dll
libraries are implemented on the system. This is true for
Linux, Solaris, Irix, OSF, and Windows) in which the Dino exter-
nal variables and functions will be searched for. The order of
searching in libraries given with this option is the same as one

on the command line.

Output profile information into stderr. Profile information
contains the number of calls and execution times of all called
functions and classes.

10. Appendix B. Implementation

65

FILES

file.d
a DINO program file

libdino.so
a DINO shared library on some Unix systems.

mpi.d
the DINO file implementing multiple precision arithmetic.

mpi.so
the DINO shared library used for implementing MPI on some Unix
systems.

mpi.dll
the DINO dl1 library used for implementing MPI on Windows sys-
tems.

ieee.d
the DINO file implementing IEEE standard floating point arith-
metic.

ieee.so
the DINO shared library used for implementing IEEE on some Unix
systems.

ieee.dll
the DINO dll library used for implementing IEEE on Windows sys-
tems.

ipcerr.d
the DINO file definining exceptions of ipc/network software.
This file is used by socket.d.

ipcerr.so
the DINO shared 1library used for implementing IPCERR on some
Unix systems.

ipcerr.dll
the DINO dl1 library used for implementing IPCERR on Windows
systems.

socket.d
the DINO file implementing work with sockets.

socket.so
the DINO shared 1library used for implementing SOCKET on some
Unix systems.

socket.dll
the DINO dll library used for implementing SOCKET on Windows
systems.

There are no temporary files used by DINO.

ENVIRONMENT

There are the following environment variables which affect DINO behav-—

ior:

DINO_HOME

If not null, it defines the places of the dino shared 1libraries
(such a library may be only on some Unix systems including Linux
and Solaris), include files, and dino standard external
libraries. The places are defined as the subdirectory 1lib in
directory given by the environment variable value. You should

10. Appendix B. Implementation

66

define the variable value on Windows if you installed the files
in a directory other than C:\dino\lib

DINO_PATH
If not null, it defines the places of dino include-files. The
value of the variable has more priority than DINO_HOME but less

priority than values given through -I options.

DINO_LIB
If not null, it defines places of dino shared library, if any.
The value of variable has more priority than DINO_HOME.
DINO_EXTERN_LIBS.

DINO_EXTERN_LIBS
If not null, it defines paths of additional Dino external
libraries. The libraries should be separated by ":" (on Unix)
or ";" (on Windows). The value has less priority than values
given in -L optioms.

DIAGNOSTICS
DINO diagnostics are self-explanatory.

AUTHOR

Vladimir N. Makarov, vmakarovQusers.sourceforge.net

BUGS

Please report bugs to cocom-bugs@lists.sourceforge.net.

DINO 5 May 2001 DINO(1)

	Introduction
	Syntax
	Vocabulary and Representation
	Declarations and Scope Rules
	Variable Declarations
	External Declarations
	Functions, Classes, Extensions

	Expressions
	Types and Values
	Designators
	Calls
	Operators
	Logical operators
	Bit operators
	Comparison operators
	Arithmetic operators
	Miscellaneous operators

	Executive statements
	Empty statement
	Block-statement
	Assignment statements
	Call-statement
	If-statement
	For-statement
	Foreach-statement
	Break- and continue-statement
	Return-statement
	Throw-statement
	Try-block
	Wait-statement

	Program
	Predeclared identifiers
	Predeclared variables
	Arguments and environment
	Version
	Threads
	Exceptions
	Files
	Miscellaneous variables

	Predeclared classes
	File
	Exception classes
	Earley parser classes

	Predeclared functions
	Mathematical functions
	Pattern matching functions
	File functions
	Time functions
	Functions for access to process information
	Miscellaneous functions

	Appendix A. Syntax of Dino
	Appendix B. Implementation

