
Ammunition (Reusable packages) - C++ interface

Vladimir Makarov, vmakarov@users.sourceforge.net Apr 5, 2001

This document describes ammunition (reusable packages written in C/C++).

Contents

1 Introduction 1

2 Package for allocating memory with fixing some allocation errors 2

3 Package for work with variable length objects 3

4 Package for work with stacks of objects 5

5 Package for work with hash tables 7

6 Package for work with source code positions 9

7 Package for output of compiler messages 11

8 Package for work with command line 14

9 Package for work with bit strings 16

10 Package for machine-independent arbitrary precision integer arithmetic 18

11 Package for machine-independent IEEE floating point arithmetic 23

12 Ticker package 35

13 Earley parser 36

1 Introduction

This document describes ammunition (reusable packages written in C/C++). The packages are oriented
towards creation of compiler and cross-compiler. Currently there are the following packages (their names
and tasks):

allocate

allocating and freeing memory with fixing some allocation errors

2. Package for allocating memory with fixing some allocation errors 2

vlobject

work with variable length objects

objstack

work with stacks of objects

hashtab

work with hash tables

position

work with source code positions

errors

output of compiler messages

commline

work with command line

bits

work with bit strings

arithm

implementing host machine-independently arbitrary precision integer numbers arithmetic

IEEE

implementing host machine-independently IEEE floating point arithmetic

ticker

timer

earley

Earley parser

2 Package for allocating memory with fixing some allocation er-

rors

Developing modern compilers it is necessary to avoid arbitrary limits on the length or number of any
data structure by allocating all data structures dynamically. Here the package ‘allocate’ which implements
allocation and freeing memory with automatic fixing allocation errors is suggested.

The package automatically calls action on situation ‘no memory’. The action never returns control back
because after calling function which processes allocation error the function ‘abort’ is always called. Therefore
the function which processes allocation error should not return control back.

The interface part of the package is file ‘allocate.h’. The implementation part is file ‘allocate.cpp’. The
interface contains class ‘allocate’ without any public constructors/destructors. The class has the following
functions:

2. Package for allocating memory with fixing some allocation errors 3

Static public function ‘change error function’

‘void change_error_function

(void (*error_function) (void))) (void)’

is used for changing up action on the situation ‘no memory’. The function also returns former function
which was early action on the situation ‘no memory’.

Static public function ‘default error function’

‘void default_error_function (void)’

is default action of the package on the situation ‘no memory’. This action consists of output message
‘*** no memory ***’ to standard error stream and calling function ‘exit’ with code equals to 1.

Static public function ‘malloc’

‘void *malloc (size_t size)’

is analogous to ANSI C library function ‘malloc’. The parameter is size of needed memory. The
function returns address of allocated memory.

Static public function ‘calloc’

‘void *calloc (size_t nel, size_t size)’

is analogous to ANSI C library function ‘calloc’. The parameters have the same sense as in standard
function ‘calloc’. The function returns address of allocated memory.

Static public function ‘free’

‘void free (void *ptr)’

is analogous to ANSI C library function ‘free’ but can accept nil pointer value. In this case function
does nothing.

Static public function ‘realloc’

‘void *realloc(void *old, size_t size)’

is analogous to ANSI C library function ‘realloc’. The first parameter is old address of reallocated
memory. The second parameter is new size of reallocated memory. The function returns new address
of reallocated memory.

3. Package for work with variable length objects 4

3 Package for work with variable length objects

The package ‘vlobject’ implements work with variable length object (VLO) and uses package ‘allocate’. Any
number of bytes may be added to and removed from the end of VLO. If it is needed the memory allocated
for storing variable length object may be expanded possibly with changing the object place. But between
any additions of the bytes (or tailoring) the object place is not changed. To decrease number of changes of
the object place the memory being allocated for the object is longer than the current object length.

The package uses package ‘allocate’. The interface part of the package is file ‘vlobject.h’. Defining macro
‘NDEBUG’ (e.g. by option ‘-D’ in C++ compiler command line) before the inclusion of the interface file
disables fixing some internal errors and errors of usage of the package. The implementation part is file
‘vlobject.cpp’. The interface contains the following objects:

Type ‘vlo t’

describes a descriptor variable length object. The type is simply synonym of ‘class vlo’. All work with
stack of objects is executed through the descriptors. It should remember that work with the object
through several descriptors is not safe.

Macro ‘VLO DEFAULT LENGTH’

has value which is default initial size of memory is allocated for VLO when the object is created (with
not given initial size). Original value of the macros is equal to 512. This macro can be redefined in
C++ compiler command line or with the aid of directive ‘#undef’ before including the interface file.

Class ‘vlo’

The class contains the following functions:

Public constructor ‘vlo’

‘vlo (size_t initial_length = VLO_DEFAULT_LENGTH)’

is used for creation of descriptor of VLO with initial zero length. If the parameter value is
absent, the value is equal to zero then the VLO initial allocated memory length is equal to
‘VLO DEFAULT LENGTH’.

Public destructor ‘ vlo’

‘~vlo (void)’

is used for deleting the descritor of VLO and freeing memory used by the VLO.

Public function ‘nullify’

‘void nullify (void)’

makes that length of VLO of given descriptor will be equal to zero (but memory for VLO is not
freed and not reallocated).

Public function ‘tailor’

‘void tailor (void)’

makes that length of memory allocated for VLO of given descriptor becomes equal to VLO length.

4. Package for work with stacks of objects 5

Public function ‘length’

‘size_t length (void)’

returns current length of VLO of given descriptor.

Public functions ‘begin’, ‘end’, ‘bound’

‘void *begin(void)’, ‘void *end(void)’, ‘void *bound(void)’

return pointer (of type ‘void *’) to correspondingly the first, the last byte of VLO of given
descriptor, and pointer to the last byte plus one. Remember that the object may change own
place after any addition.

Public function ‘shorten’

‘void shorten (size_t n)’

removes n bytes from the end of VLO of given descriptor. VLO is nullified if its length is less
than n.

Public function ‘expand’

‘void expand (size_t length)’

increases length of VLO of given descriptor on number of bytes given as the parameter. The
values of bytes added to the end of VLO will be not defined.

Public function ‘add byte’

‘void add_byte (int b)’

adds byte given as the parameter to the end of VLO of given descriptor.

Public function ‘add memory’

‘void add_memory (void *str, size_t length)’

adds memory starting with address given as the first macro parameter and with length given as
the second parameter to the end of VLO of given descriptor.

Public function ‘add string’

‘void add_string (const char *str)’

adds C string (with end marker 0) given as the parameter to the end of VLO of given descriptor.
Before the addition the macro deletes last character of the VLO. The last character is suggested
to be C string end marker 0.

4 Package for work with stacks of objects

The package ‘objstack’ is based on package ‘allocate’ and implements efficient work with stacks of objects
(OS). Work with the object on the stack top is analogous to one with a variable length object. One
motivation for the package is the problem of growing char strings in symbol tables. Memory for OS is

4. Package for work with stacks of objects 6

allocated by segments. A segment may contain more one objects. The most recently allocated segment
contains object on the top of OS. If there is not sufficient free memory for the top object than new segment
is created and the top object is transferred into the new segment, i.e. there is not any memory reallocation.
Therefore the top object may change its address. But other objects never change address.

The package uses package ‘allocate’. The interface part of the package is file ‘objstack.h’. Defining macro
‘NDEBUG’ (e.g. by option ‘-D’ in C++ compiler command line) before inclusion of the interface file disables
fixing some internal errors and errors of usage of the package. The implementation part is file ‘objstack.cpp’.
The interface contains the following objects:

Type ‘os t’

describes a descriptor of stack of objects. The type is simply synonym of ‘class os’. All work with stack
of objects is executed through the descriptors. It should remember that work with the stack through
several descriptors is not safe.

Macro ‘OS DEFAULT SEGMENT LENGTH’

has value which is default size of memory segments which will be allocated for OS when the stack is
created (with not given initial segment size). This is also minimal size of all segments. Original value
of the macros is equal to 512. This macro can be redefined in C++ compiler command line or with
the aid of directive ‘#undef’ before including the interface file.

Class ‘os’

The class contains the following functions:

Public constructor ‘os’

‘os (size_t initial_segment_length

= OS_DEFAULT_SEGMENT_LENGTH)’

creates OS which contains the single zero length object. Minimum size of memory segments which
will be allocated for OS is given as the parameter. If the parameter is absent the allocated memory
segments length is equal to ‘OS DEFAULT SEGMENT LENGTH’. But in any case the segment
length is always not less than maximum alignment.

Public destructor ‘ os’

‘~os (void)’

is used for deleting the descritor of OS and freeing memory used by the OS.

Public function ‘empty’

‘void empty (void)’

is used for removing all objects on OS and freeing all memory allocated for OS except for the first
segment.

Public function ‘top finish’

‘void top_finish (void)’

4. Package for work with stacks of objects 7

creates new variable length object with initial zero length on the top of OS of given descriptor.
The work (analogous to one with variable length object) with object which was on the top of OS
is finished, i.e. the object will never more change address.

Public function ‘top nullify’

‘void top_nullify (void)’

makes that length of variable length object on the top of OS of given descriptor will be equal to
zero.

Public function ‘top length’

‘size_t top_length (os)’

returns current length of variable length object on the top of OS of given descriptor.

Public functions ‘top begin’, ‘top end’, ‘top bound’

‘void *top_begin (void)’, ‘void *top_end (void)’,

‘void *top_bound (void)’

return pointer to correspondingly the first, the last byte of variable length object on the top of
OS of given descriptor, and pointer to the last byte plus one. Remember that the top object may
change own place after any addition.

Public function ‘top shorten’

‘void top_shorten (size_t n)’

removes n bytes from the end of variable length object on the top of OS of given descriptor. The
top variable length object is nullified if its length is less than n.

Public function ‘top expand’

‘void top_expand (size_t length)’

increases length of variable length object on the top of OS of given descriptor on number of bytes
given as the parameter. The values of bytes added to the end of variable length object on the top
of OS will be not defined.

Public function ‘top add byte’

‘void top_add_byte (int b)’

adds byte given as the parameter to the end of variable length object on the top of OS of given
descriptor.

Public function ‘top add memory’

‘void top_add_memory (void *str, size_t length)’

adds memory starting with address given as the first parameter and with length given as the
second parameter to the end of variable length object on the top of OS of given descriptor.

Public function ‘top add string’

5. Package for work with hash tables 8

‘void top_add_string (const char *str)’

adds C++ string (with end marker 0) given as the parameter to the end of variable length string
on the top of OS of the descriptor. Before the addition the macro deletes last character of the
top variable length object. The last character is suggested to be C++ string end marker 0.

5 Package for work with hash tables

The most compilers use search structures. Here the package ‘hashtab’ which implements expandable hash
tables is suggested. This abstract data implements features analogous to ones of public domain functions
‘hsearch’, ‘hcreate’ and ‘hdestroy’. The goal of the abstract data creation is to implement additional needed
features. The abstract data permits to work simultaneously with several expandable hash tables. Besides
insertion and search of elements the elements from the hash tables can be also removed. The table element
can be only a pointer. The size of hash tables is not fixed. The hash table will be expanded when its
occupancy will become big.

The abstract data implementation is based on generalized Algorithm D from Knuth’s book ”The art of
computer programming”. Hash table is expanded by creation of new hash table and transferring elements
from the old table to the new table.

The package uses package ‘allocate’. The interface part of the abstract data is file ‘hashtab.h’. The imple-
mentation part is file ‘hashtab.cpp’. The interface contains the following objects:

Type ‘hash table entry t’

is described as ‘void *’ and represents hash table element type. Empty entries have value ‘NULL’.

Type ‘hash table t’

describes hash table itself. The type is simply synonym of ‘class hash table *’.

Class ‘hash table’

The class contains the following functions:

Public constructor ‘hash table’

‘hash_table

(size_t size,

unsigned (*hash_function)

(hash_table_entry_t el_ptr),

int (*eq_function) (hash_table_entry_t el1_ptr,

hash_table_entry_t el2_ptr))’

creates hash table with length slightly longer than value of function parameter ‘size’. Created
hash table is initiated as empty (all the hash table entries are NULL). The hash table will use
functions ‘hash function’, ‘eq function’ given as the function parameters to evaluate table element
hash value and function to test on equality of two table elements.

Public destructor ‘ hash table’

‘~hash_table (void)’

5. Package for work with hash tables 9

deletes given hash table and frees memory allocated for it.

Public function ‘empty’

‘void empty (void)’

makes the hash table empty. If you need to remove all table elements, it is better to use this
function than several times function ‘remove element from entry’. This function does not change
size of the table or clear statistics about collisions.

Public function ‘find entry’

‘hash_table_entry_t *find_entry

(hash_table_entry_t element,

int reserve)’

searches for hash table entry which contains element equal to value of the function parameter
‘element’ or empty entry in which ‘element’ can be placed (if the element does not exist in the
table). The function parameter ‘reserve’ is to be nonzero if the element is to be placed in the table.
The element should be inserted into the table entry before another call of ‘find hash table entry’.
The table is expanded if occupancy (taking into account also deleted elements) is more than 75%.
The occupancy of the table after the expansion will be about 50%.

Public function ‘remove element from entry’

‘void remove_element_from_entry

(hash_table_entry_t element)’

removes element from hash table entry whose value is given as the function parameter. Hash
table entry for given value should be not empty (or deleted). The hash table entry value will be
marked as deleted after the function call.

Public function ‘size’

‘size_t size (void)’

returns current size of given hash table.

Public function ‘elements number’

‘size_t elements_number (void)’

returns current number of elements in given hash table.

Public function ‘collisions’

‘int collisions (void)’

returns number of of percents of fixed collisions during all work with given hash table.

Static public function ‘all collisions’

‘int all_collisions (void)’

returns number of of percents of fixed collisions during all work with all hash tables.

6. Package for work with source code positions 10

6 Package for work with source code positions

The compilers often use internal representation which stores source code positions. Here package ‘position’
which serves to support information about source positions of compiled files taking into account all included
files is suggested.

The strategy of the package usage can be follows. Function ‘initiate’ of class ‘positions’ is called by the first.
After that function ‘start file’ of class ‘positions’ is called when a file is opened for compilation as source
or included file. Members ‘line number’ and ‘column number’ of variable ‘current position’ are modified
correspondingly during given file compilation. The value of ‘current position’ can be stored into internal
representation for usage for output messages on the following passes. Function ‘finish file’ of class ‘positions’
is called when a processed file is closed. Function ‘finish’ of class ‘positions’ may be called after all processing
a source file.

The package uses packages ‘vlobject’ and ‘objstack’ which use package ‘allocate’. The interface part of
the package is file ‘position.h’. The implementation part is file ‘position.cpp’. The interface contains the
following objects:

Type ‘position t’

is simply ‘class position’ describes a file position. The class has the following members:

Public members ‘line number’, ‘column number’

are source line and column corresponding to given position.

Public function ‘file name’

‘const char *file_name (void)’

returns name of file to which given position belongs.

Public function ‘path’

‘class position *path (void)’

is pointer to another position class object representing position of a include-clause which caused
immediately given file compilation.

Public function ‘path’

‘int file_inclusion_level (void)’

returns number of level of position file inclusion. The level numbers are started with zero for
positions corresponding non-included files and for positions which does not correspond to concrete
file.

Class ‘positions’

The class has not public constructors/destructors. The class has the following members:

Static const member ‘no position’

has value of type ‘position t’ has values ‘line number’, ‘column number’ equals to zero or ‘NULL’.
The value does not correspond to concrete file position.

7. Package for output of compiler messages 11

Static member ‘current’

has value which is current file position.

Static public function ‘initiate’

‘void initiate (void)’

initiates the package. Value of variable ‘current’ becomes equal to ‘no position’.

Static public function ‘finish’

‘void finish (void)’

frees all memory allocated during package work.

Static public function ‘start file’

‘void start_file (const char *file_name)’

save position in member variable ‘current’ and sets up new values of members of ‘current’. Values
of members ‘file name’, ‘line number’, ‘column number’, and ‘path’ become equal to the function
parameter value, 1, 0, and pointer to the saved position. Values of ‘current’ during different
calls of the function must be different (e.g. different columns or lines), i.e. positions of different
include-clauses must be different.

Static public function ‘finish file’

‘void finish_file (void)’

restores previous value of the member ‘current’, more exactly sets up the member by position to
which the member ‘path’ refers.

Static public Function ‘compare’

‘int compare_positions (position_t position_1,

position_t position_2)’

compares two positions given by parameters of type ‘position t’ and returns -1 (if the first position
is less than the second), 0 (if the first position is equal to the second) or 1 (if the first position is
greater than the second). The order of positions is lexicographic.

7 Package for output of compiler messages

The most of compilers report error messages for incorrect program. Here the package ‘errors’ which serves to
output one-pass or multi-pass compiler messages of various modes (errors, warnings, fatal, system errors and
appended messages) in Unix style or for traditional listing is suggested. The package also permits adequate
error reporting for included files.

The package uses packages ‘vlobject’, ‘objstack’, ‘position’ which use package ‘allocate’. Therefore package
‘position’ have to be initiated before any work with this package. The interface part of the package is file ‘er-
rors.h’. The implementation part is file ‘errors.cpp’. The maximum length of generated error message is sug-
gested to be not greater then ‘MAX ERROR MESSAGE LENGTH’. The default value (150) of this macro

7. Package for output of compiler messages 12

can be redefined with corresponding C++ compiler option ‘-DMAX ERROR MESSAGE LENGTH=...’ dur-
ing compilation of file ‘errors.cpp’. The interface contains only one class ‘errors’. The class has the following
members:

Public functions ‘number of errors’, ‘number of warnings’

‘unsigned int number_of_errors (void)’

‘unsigned int number_of_warnings (void)’

return values which are number of correspondingly errors and warnings fixed after given class object
creation.

Integer variable ‘maximum number of errors’

has value which is maximum number of errors which will be fixed. If an error is fixed with number
equals to ‘maximum number of errors’ then special fatal error ‘fatal error – too many errors’ with
position of given error is fixed instead of the error. And all following errors are ignored. Zero value of
the variable means that the special fatal error will never fixed.

Public virtual function ‘fatal error function’

‘void fatal_error_function (void)’

without parameters which will be called after fixing a fatal error. The fatal error function is suggested
to do not return the control back. The default fatal error function only calls ‘exit (1)’.

Public constructor ‘errors’

‘errors (int immediate_output_flag)’

creates the class ‘errors’ object working in regime depending on parameter value. If the parameter
value is nonzero than all fixed messages are output immediately. Otherwise the compiler messages are
stored until function ‘output’ are called.

Public destructor ‘ errors’

‘~errors (void)’

frees all memory allocated during the class ‘errors’ object work.

Public function ‘output’

‘void output (void)’

sorts (stable sorting) all fixed messages by their positions, outputs ones, and deletes ones. Appended
messages will be output after corresponding error or warning. This function should be used only in
regime of storing messages.

Public function ‘error’

7. Package for output of compiler messages 13

‘void error (int fatal_error_flag, position_t

position, const char *format, ...)’

fixes error (fatal error if the first parameter value is nonzero) at the position given as the second
parameter. If the error is fatal than functions ‘output’ and ‘*fatal error function’ are called. The
diagnostic messages are formed analogous to output of function ‘printf’. For example,

error (1, current_position, "fatal error - no memory");

Public function ‘warning’

‘void warning (position_t position, const char *format, ...)’

is analogous to the previous but is used to fix a warning.

Public function ‘append message’

‘void append_message (position_t position,

const char *format, ...)’

When regime of immediately output of fixed message is on this function is analogous to the previous
(except for incrementing ‘number of warnings’). In opposite case the appended message will be output
with the most recent fixed error or warning independently from value of the first parameter. Of course
the previously fixed error or warning must exist.

For example, this function may be used for generation of messages of type

‘<file>:<line>:<position-1>: repeated declaration’

and then

‘<file>:<line>:<position-1>: previous declaration’.

Description of function ‘output error function’ contains explanation why decremented position is out-
put.

Public function ‘system error’

‘void system_error (int fatal_error_flag,

position_t position,

const char *format, ...)’

is analogous to function ‘error’ but serves to fix a system error. The current system message without
head blanks (given by standard function ‘strerror’) is placed after the message formed by the function
parameters. For example, the following call may be used when a file is not opened

system_error (1, current_position,

"fatal error - %s:", new_file_name);

8. Package for work with command line 14

Public virtual function ‘output error function’

‘void default_output_error_function

(int appended_message_flag, position_t position,

const char *message)’

is used to output error message. The function has three parameters – flag of appended message,
message position and message itself.

By default the function is oriented to output in Unix style according to GNU standard. To output a
listing the function ‘output error function’ should be changed. The default function output message
in the following formats:

MESSAGE (NULL file name)

FILE_NAME:1: MESSAGE (zero line number)

FILE_NAME:LINE_NUMBER: MESSAGE (zero column number)

FILE_NAME:LINE_NUMBER:COLUMN_NUMBER-1: MESSAGE (all other cases)

After that the function outputs newline. The function also outputs additional messages ‘in file processed
from ...’ if given message is not appended message and corresponds to file different from one of previous
output error. This message reflects path of the message position (see package ‘position’), i.e. reflects
positions of corresponding include-clauses. Decremented column number is output in order to be in
concordance with editor Emacs in which positions start with 0.

8 Package for work with command line

To make easy process of command line, here abstract data ‘commline’ is suggested. This abstract data
implements features analogous to ones of public domain function ‘getopt’. The goal of the abstract data
creation is to use more readable language of command line description and to use command line description
as help output of program.

POSIX terminology concerning command line is used here. Command line is divided into command name
and arguments. The arguments are subdivided into options, option-arguments and operands. Option starts
with ‘-’. All arguments after first ‘–’ in command line are treated as operands.

The description of command line is made up from two parts. Any part (or both) may be absent in the
description. First part contains option-arguments names of options which are in the second part. option-
arguments names are separated by white space. The second part starts with percents ‘%%’ and contains any
text in which description of options are placed. Any description of option starts with character “’ followed
by character ‘-’ and finishes by character ‘”. White spaces may precede option-argument name. It means
that the corresponding option has obligatory separate option-argument. For example, the following may be
a part of description of options of a pascal compiler command line.

dir xxx file

%%

command line: pc [options] file ...

Options:

‘-0’ Pascal standard level 0 ‘-1’ Pascal standard Level 1.

8. Package for work with command line 15

‘-29000’ Am29000 code generation ‘-29050’* Am29050 code generation

‘-c’ only object files creation ‘-el’ output of listing

‘-g’ information for debuggers ‘-Idir’ data task units directory

‘-lxxx’ library ‘-Ldir’ libraries directory

‘-o file’ output file ‘-O’ all optimizations

‘-S’ only ass. code creation ‘-v’ loaded processes indication

‘-w’ no warnings generation

Star * marks defaults

In this example options with names ‘-I’, ‘-l’, ‘-L’ and ‘-o’ have option-arguments but only option with name
‘-o’ has separate option-argument, i.e. option-argument which is represented by separate argument after
given option in command line.

The interface part of the abstract data is file ‘commline.h’. The package uses package ‘vlobject’ which use
package ‘allocate’. The implementation part is file ‘commline.cpp’. The interface contains only one class
‘command line’. The class has the following members:

Public constructor ‘command line’

‘command_line (int argc, char **argv,

const char *description,

int & correct_description_flag)’

The constructor processes command line description given as string parameter and command line
itself given as two parameter ‘argc’ and ‘argv’. The function returns 0 through parameter ‘cor-
rect description flag’ if error in command line description is fixed, otherwise returns 1 (it means suc-
cess).

Public destructor ‘command line’

‘~command_line (void)’

finishes work with the command line.

Public function ‘output description’

‘void output_description (void)’

outputs the second part (without ‘%%’) of description of options to stderr. This function should be
called when it is necessary to show the program usage.

Public function ‘next operand’

‘int next_operand (int flag_of_first)’

returns command line argument number of next operand if the function parameter is nonzero. Oth-
erwise the function returns number of the first operand in the command line. The function returns 0
if all operands are already processed. Returned number may be used as index of array returned by
function ‘argument vector’ to access corresponding operand.

8. Package for work with command line 16

Public function ‘number of operands’

‘int number_of_operands (void)’

returns number of operands in the command line.

Public function ‘next option’

‘int next_option (int flag_of_first)’

returns command line argument number of next option if the function parameter is nonzero. Otherwise
the function returns number of the first option in the command line. The function returns 0 if all
options are already processed. Returned number may be used as index of array returned by function
‘argument vector’ to access corresponding option.

Function ‘option characteristics’

‘char *option_characteristics (int argument_number,

int *option_has_argument)’

returns pointer to option name which describes the command line argument with number ‘argu-
ment number’ given as the first parameter of the function. The function returns NULL if the cor-
responding option in the command line description is not found or an option described as with option-
argument has not option-argument in the command line. Remember that option name with option-
argument differs from option in the command line (e.g. ‘-U’ and ‘-Ufoo’). If the option in the command
line description is found than the function sets up correspondingly the second function parameter ‘op-
tion has argument’. The case of returned NULL and ‘*option has argument’ equals to TRUE means
that given option must have option-argument but the option has not option-argument in the command
line.

Public function ‘last option place’

‘int last_option_place (const char *option_name)’

returns number of last option with given option name in the command line. The function returns 0 if
the option is absent in the command line.

Public function ‘option argument’

‘char *option_argument (const char *option_name)’

returns pointer to argument of last option in the command line with given option name. The function
returns NULL if the option is absent in the command line. The function must be called only for options
which have argument separated by white spaces.

Public functions ‘argument count’, ‘argument vector’

9. Package for work with bit strings 17

‘int argument_count (void)’

‘char **argument_vector (void)’

return ‘argc’ and ‘argv’ of function ‘main’. See also description of the class constructor.

9 Package for work with bit strings

The package for work with bit strings is used to implement package ‘IEEE’. But of course the package can
be used for solving other tasks.

Here a bit is given by address (start address) of byte from which counting bits starts and its displacement
which is any non negative number of bit from the start address. The most significant bit of the start address
byte has number 0. The bit string is given by its first bit and its length in bits.

The interface part of the package is file ‘bits.h’. The implementation part is file ‘bits.cpp’. The interface
contains only class ‘bits’ without public constructors and destructors. The class contains the following
members:

Static public function ‘bit’

‘int bit (const void *start_byte, int bit_displacement)’

returns given bit value as integer value ‘0’ or ‘1’. There is static public function ‘set bit’

‘void set_bit (void *start_byte, int bit_displacement,

int bit)

for changing value of a bit. Parameter ‘bit’ must have value ‘0’ or ‘1’.

Static public function ‘is zero bit string’

‘int is_zero_bit_string (const void *start_byte,

int bit_displacement,

int bit_length)’

returns ‘1’ if given bit string contains only zero value bits, 0 otherwise.

Static public function ‘bit string set’

‘void bit_string_set (void *start_byte, int

bit_displacement, int bit,

int bit_length)’

sets up new value of all bits of given bit string. This function is bit string analog of standard C++
function ‘memset’.

Static public function ‘bit string copy’

10. Package for machine-independent arbitrary precision integer arithmetic 18

‘void bit_string_copy (void *to, int to_bit_displacement,

const void *from,

int from_bit_displacement,

int bit_length)’

copys a bit string to another bit string. The bit strings must be nonoverlapped. This function is bit
string analog of standard C++ function ‘memcpy’.

Static public function ‘bit string move’

void bit_string_move (void *to, int to_bit_displacement,

const void *from,

int from_bit_displacement,

int bit_length)’

copys a bit string to another bit string. The bit strings can be overlapped. This function is bit string
analog of standard C++ function ‘memmove’.

Static public function ‘bit string comparison’

‘int bit_string_comparison

(const void *str1, int bit_displacement1,

const void *str2, int bit_displacement2,

int bit_length)’

returns 0 if the bit strings are equal, 1 if the first bit string is greater than the second, -1 if the first bit
string is less than the second. This function is bit string analog of standard C++ function ‘memcmp’.

10 Package for machine-independent arbitrary precision integer

arithmetic

Abstract data ‘arithm’ may be used for implementation of a cross-compiler. This abstract data implements
arbitrary precision integer and unsigned integer number arithmetic by machine independent way. The
implementation of the package functions are not sufficiently efficient in order to use for run-time. The package
functions are oriented to implement constant-folding in compilers. This package is necessary because host
machine may not support such arithmetic for target machine. For example, VAX does not support does not
support more 32-bits integer numbers arithmetic.

The numbers in packages are represented by bytes in big endian mode, negative integer numbers are repre-
sented in complementary code. All sizes are given in bytes and must be positive. Results of executions of
all functions can coincide with a operand(s). All functions of addition, subtraction, multiplication, division,
evaluation of remainder, shift, changing size and transformation of string into number fix overflow. The
overflow is fixed when result can not be represented by number of given size.

The interface part of the abstract data is file ‘arithm.h’. The implementation part is file ‘arithm.cpp’. The
maximum length of integer number is suggested to be not greater then ‘MAX INTEGER OPERAND SIZE’.

10. Package for machine-independent arbitrary precision integer arithmetic 19

The default value (128) of this macro can be redefined with corresponding C++ compiler option ‘-
DMAX INTEGER OPERAND SIZE=...’ during compilation of file ‘arithm.cpp’. But in any case the
minimal value of the macros will be 16. The interface contains the following external definitions:

Class ‘integer’

is auxialiary. It serves to describe common variables and functions for work with signed and unsigned
integers (classes ‘signed integer’ and ‘unsigned integer’). The class ‘integer’ has the following members.

Public static variable ‘overflow bit’

has only two values 0 or 1. The value ‘1’ corresponds to overflow. The variable value are modified
by all functions of addition, subtract, multiplication, division, evaluation of remainder, shift,
changing size and transformation of string into number.

Public static variable ‘const unsigned char *zero constant’

represents zero (unsigned) integer of any size.

Public static function ‘default arithmetic overflow reaction’

‘void default_arithmetic_overflow_reaction (void)’

Originally reaction on all integer and unsigned integer overflow is equal to this function. The
function does nothing. Reaction on overflow for integers or unsigned integers is called after
setting up variable ‘overflow bit’.

Classes ‘signed integer’ and ‘unsigned integer’

are sub-classes of the class ‘integer’. The first class contains functions for implementation of signed in-
teger arithmetic. The second one contains functions for implementation of unsigned integer arithmetic.
The classes contains the following functions:

Static public function ‘set overflow reaction’

‘void (*set_overflow_reaction

(void (*function) (void))) (void)’

change reaction on integer overflow and returns previous overflow reaction function.

Static public functions ‘maximum’

‘void maximum (int size, void *result)’

create given size (in bytes) maximal integer constant which is placed in memory whose address is
given by the second parameter.

Static public functions ‘add’

‘void add (int size, const void *op1,

const void *op2,

void *result)’

make integer addition of integers of given size. The functions fix overflow when result can not
be represented by number of given size. There are analogous functions which implement other
operations:

10. Package for machine-independent arbitrary precision integer arithmetic 20

‘subtract’,

‘multiply’,

‘divide’,

‘remainder’.

Static public functions ‘shift left’

‘void shift_left (int size, const void *operand,

int bits, void *result)’

make left shift of integer of given size on given number of bits. If number of bits is negative
the functions make shift to right actually. The functions fix overflow when result can not be
represented by number of given size, i.e. in other words the opposite shift (to right) results in
number not equal to source operand. There are analogous functions which implement another
operation

‘shift_right’.

Static public function ‘ or ’

‘void _or_ (int size, const void *op1,

const void *op2,

void *result)’

make bitwise ‘or’ of integers of given size. There are analogous functions which implement bitwise
‘and’:

‘_and_’.

Static public functions

‘void _not_ (int size, const void *operand,

void *result)’

make bitwise ‘not’ of integer of given size.

Static public functions ‘eq’

‘int eq (int size, const void *op1, const void *op2)’

compare two integers of given size on equality and returns 1 or 0 depending on result of the
comparison. There are analogous functions which implement other integer operations:

‘ne’,

‘gt’,

‘lt’,

‘ge’,

and ‘le’.

Static public functions ‘change size’

‘void change_size (int operand_size,

const void *operand,

int result_size, void *result)’

10. Package for machine-independent arbitrary precision integer arithmetic 21

change size of integer. The functions fix overflow when result can not be represented by number
of given size.

Static public functions ‘to string’

‘char *to_string (int size, const void *operand,

char *result)’

transform integer of given size to decimal ascii representation. Sign is present in result string only
for negative numbers (it is not possible for the function in class ‘unsigned integer’). The functions
return value ‘result’.

Static public functions ‘to based string’

‘char *to_based_string (int size, const void *operand,

int base, char *result)’

transform integer of given size to ascii representation with given base. The base should be between
2 and 36 including them. Digits more 9 are represented by ’a’, ’b’ etc. Sign is present in result
string only for negative numbers (it is not possible for the function in class ‘unsigned integer’).
The functions return value ‘result’.

Static public functions ‘from string’

‘char *from_string (int size, const char *operand,

void *result)’

skip all white spaces at the begin of source string and transforms the tail of the source string (dec-
imal ascii representation with possible sign ‘+’ or ‘-’ only for the function in class ‘signed integer’)
to given size integer and return pointer to first non digit in the source string. If the string started
with invalid integer representation the result will be zero. The functions fix overflow when result
can not be represented by number of given size.

Static public functions ‘from based string’

‘char *from_based_string (int size, const char *operand,

int base, void *result)’

skip all white spaces at the begin of source string and transforms the tail of the source string
(ascii representation with given base and with possible sign ‘+’ or ‘-’ only for the function in class
‘signed integer’) to given size integer and return pointer to first non digit in the source string.
The base should be between 2 and 36 including them. Digits more 9 are represented by ’a’ (or
’A’), ’b’ (or ’B’) etc. If the string started with invalid integer representation the result will be
zero. The functions fix overflow when result can not be represented by number of given size.

Classes ‘sint’ and ‘unsint’

Classes ‘signed integer’ and ‘unsigned integer’ containing only static function are simply written in C
style. Object oriented implementation of integer arithmetic requires C++ template classes which is
not supported all C++ compilers. Therefore if you define macro ‘NO TEMPLATE’ before inclusion of
interface file, classes ‘sint’ and ‘unsint’ will be absent. The classes is parameterized by size of integers
(in bytes). As the classes are subclasses of ‘signed integer’ and ‘unsigned integer’, you can members
‘overflow bit’, ‘set overflow reaction’ to work with arithmetic overflow. The classes have the following
memebers:

10. Package for machine-independent arbitrary precision integer arithmetic 22

Public constructors ‘sint’, ‘unsint’

‘sint (int value)’, ‘sint (void)’

‘unsint (unsigned int value)’, ‘unsint (void)’

can be used for creation integer with given value or zero integer.

Static public functions ‘max’, ‘min’

‘class sint<size> max (void)’

‘class sint<size> min (void)’

‘class unsint<size> max (void)’

‘class unsint<size> min (void)’

create integers and unsigned integers of maximal and minimal value.

Public operators ‘+’

‘class sint<size> operator +

(const class sint<size> & op)’

‘class unsint<size> operator +

(const class unsint<size> & op)’

make integer addition of integers of given size. The operator fixes overflow when result can not
be represented by number of given size. There are analogous operators which implement other
operations:

‘-’,

‘*’,

‘/’,

‘%’.

Public operators ‘<<’

‘class sint<size> operator << (int bits)’

‘class unsint<size> operator << (int bits)’

make left shift of integer on given number of bits. If number of bits is negative operator makes
shift to right actually. The operators fix overflow when result can not be represented by number
of given size, i.e. in other words the opposite shift (to right) results in number not equal to source
operand. There are analogous operators which implement another operation (right shift)

‘>>’.

Public operators ‘|’
‘class sint<size> operator |

(const class sint<size> & op)’

‘class unsint<size> operator |

(const class unsint<size> & op)’

make bitwise ‘or’ of integers. There are analogous operators which implement bitwise ‘and’:

‘& ’.

10. Package for machine-independent arbitrary precision integer arithmetic 23

Public operators

‘class sint<size> operator ~ (void)’

‘class unsint<size> operator ~ (void)’

make bitwise ‘not’ of integer of given size.

Public operators ‘==’

‘int operator == (const class sint<size> & op)’

‘int operator == (const class unsint<size> & op)’

compare two integers of given size on equality and returns 1 or 0 depending on result of the
comparison. There are analogous operators which implement other integer operations:

‘!=’,

‘>’,

‘<’,

‘>=’,

and ‘<=’.

Public functions ‘to str’

‘char *to_str (char *result)’

transform integer to decimal ascii representation. Sign is present in result string only for negative
numbers (it is not possible for the function in class ‘unsint’). The functions return value ‘result’.

Public functions ‘to based str’

‘char *to_based_str (int base, char *result)’

transform integer to ascii representation with given base. The base should be between 2 and 36
including them. Digits more 9 are represented by ’a’, ’b’ etc. Sign is present in result string only
for negative numbers (it is not possible for the function in class ‘unsint’). The functions return
value ‘result’.

Public functions ‘from str’

‘char *from_str (const char *operand)’

skip all white spaces at the begin of source string and transforms the tail of the source string (dec-
imal ascii representation with possible sign ‘+’ or ‘-’ only for the function in class ‘signed integer’)
to given integer and return pointer to first non digit in the source string. If the string started
with invalid integer representation the result will be zero. The functions fixe overflow when result
can not be represented by number of given size.

Public functions ‘from based str’

‘char *from_based_str (const char *operand, int base)’

skip all white spaces at the begin of source string and transforms the tail of the source string
(ascii representation with given base and with possible sign ‘+’ or ‘-’ only for the function in class
‘signed integer’) to given integer and return pointer to first non digit in the source string. The

11. Package for machine-independent IEEE floating point arithmetic 24

base should be between 2 and 36 including them. Digits more 9 are represented by ’a’ (or ’A’),
’b’ (or ’B’) etc. If the string started with invalid integer representation the result will be zero.
The functions fixe overflow when result can not be represented by number of given size.

Template functions ‘new size’

‘template <int result_size, int operand_size>

inline void new_size (class sint<operand_size> & operand,

class sint<result_size> & result)’

‘template <int result_size, int operand_size>

inline void new_size (class unsint<operand_size> & operand,

class unsint<result_size> & result)’

change size of integer. The functions fix overflow when result can not be represented by number of
given size.

11 Package for machine-independent IEEE floating point arith-

metic

Abstract data ‘IEEE’ may be used for implementation of a cross-compiler. This abstract data implements
IEEE floating point arithmetic by machine independent way with the aid of package ‘arithm’. This abstract
data is necessary because host machine may not support such arithmetic for target machine. For example,
VAX does not support IEEE floating point arithmetic. The floating point numbers are represented by bytes
in big endian mode. The implementation of the package functions are not sufficiently efficient in order to
use for run-time. The package functions are oriented to implement constant-folding in compilers. All integer
sizes (see transformation functions) are given in bytes and must be positive.

Functions of addition, subtraction, multiplication, division, conversion of floating point numbers of different
formats can fix input exceptions. If an operand of such operation is trapping (signal) not a number then
invalid operation and reserved operand exceptions are fixed and the result is (quiet) NaN, otherwise if an
operand is (quiet) NaN then only reserved operand exception is fixed and the result is (quiet) NaN. Operation
specific processing the rest of special case values of operands is placed with description of the operation.
In general case the function can fix output exceptions and produces results for exception according to the
following table. The result and status for a given exceptional operation are determined by the highest priority
exception. If, for example, an operation produces both overflow and imprecise result exceptions, the overflow
exception, having higher priority, determines the behavior of the operation. The behavior of this operation
is therefore described by the Overflow entry of the table.

Exception|Condition| |Result |Status

-----------|---------|---------------------|-------|-------------

|masked | IEEE_RN(_RP)| +Inf |IEEE_OFL and

|overflow | sign + IEEE_RZ(_RM)| +Max |IEEE_IMP

|exception|---------------------|-------|-------------

Overflow | | sign - IEEE_RN(_RM)| -Inf |IEEE_OFL and

| | IEEE_RZ(_RP)| -Max |IEEE_IMP

|---------|---------------------|-------|-------------

|unmasked | Precise result |See |IEEE_OFL

11. Package for machine-independent IEEE floating point arithmetic 25

|overflow |---------------------|above |-------------

|exception| Imprecise result | |IEEE_OFL and

| | | |IEEE_IMP

-----------|---------|---------------------|-------|-------------

|masked | |Rounded|IEEE_UFL and

|underflow| Imprecise result |result |IEEE_IMP

Underflow |exception| | |

|---------|---------------------|-------|-------------

|unmasked | Precise result |result |IEEE_UFL

|underflow|---------------------|-------|-------------

|exception| Imprecise result |Rounded|IEEE_UFL and

| | |result |IEEE_IMP

-----------|-------------------------------|-------|-------------

|masked imprecise exception |Rounded|IEEE_IMP

Imprecise | |result |

|-------------------------------|-------|-------------

|unmasked imprecise exception |Rounded|IEEE_IMP

| |result |

The package uses package ‘bits’. The interface part of the abstract data is file ‘IEEE.h’. The implementation
part is file ‘IEEE.cpp’. The interface contains the following external definitions:

Macros ‘IEEE FLOAT SIZE’, ‘IEEE DOUBLE SIZE’, ‘IEEE QUAD SIZE’

have values which are are sizes of IEEE single, double and quad precision floating point numbers (‘4’,
‘8’, and ‘16’ correspondingly).

Macros ‘MAX SINGLE 10 STRING LENGTH’, ‘MAX DOUBLE 10 STRING LENGTH’, ‘MAX QUAD 10 STRING LENGTH’

have values which are maximal length of string generated by functions creating decimal ascii represen-
tation of IEEE floats (see functions to string).

Macros ‘MAX SINGLE 16 STRING LENGTH’, ‘MAX DOUBLE 16 STRING LENGTH’, ‘MAX QUAD 16 STRING LENGTH’, ‘MAX SINGLE 8 STRING LENGTH’, ‘MAX DOUBLE 8 STRING LENGTH’, ‘MAX QUAD 8 STRING LENGTH’, ‘MAX SINGLE 4 STRING LENGTH’, ‘MAX DOUBLE 4 STRING LENGTH’, ‘MAX QUAD 4 STRING LENGTH’, ‘MAX SINGLE 2 STRING LENGTH’, ‘MAX DOUBLE 2 STRING LENGTH’, ‘MAX QUAD 2 STRING LENGTH’

have values which are maximal length of string generated by functions creating binary ascii represen-
tation of IEEE floats with given base (see functions to binary string).

Types ‘IEEE float t’, ‘IEEE double t’, and ‘IEEE quad t’

are simply synonyms of classes ‘IEEE float’, ‘IEEE double’, and ‘IEEE quad’ representing correspond-
ingly IEEE single precision, double, and quad precision floating point numbers.

Constants ‘IEEE RN’, ‘IEEE RM’, ‘IEEE RP’, ‘IEEE RZ’

defines rounding control (round to nearest representable number, round toward minus infinity, round
toward plus infinity, round toward zero).

Round to nearest means the result produced is the representable value nearest to the infinitely-precise
result. There are special cases when infinitely precise result falls exactly halfway between two rep-
resentable values. In this cases the result will be whichever of those two representable values has a
fractional part whose least significant bit is zero.

11. Package for machine-independent IEEE floating point arithmetic 26

Round toward minus infinity means the result produced is the representable value closest to but no
greater than the infinitely precise result.

Round toward plus infinity means the result produced is the representable value closest to but no less
than the infinitely precise result.

Round toward zero, i.e. the result produced is the representable value closest to but no greater in
magnitude than the infinitely precise result.

Class ‘IEEE’

The class has the following functions common for all packages:

Static public function ‘reset’

‘void reset (void)’

and to separate bits in mask returned by functions

‘IEEE_get_sticky_status_bits’,

‘IEEE_get_status_bits’, and

‘IEEE_get_trap_mask’.

Function ‘IEEE reset’

‘void IEEE_reset (void)’

and to separate bits in mask returned by functions

‘IEEE_get_sticky_status_bits’,

‘IEEE_get_status_bits’, and

‘IEEE_get_trap_mask’.

Static public function ‘get trap mask’

‘int get_trap_mask (void)’

returns exceptions trap mask. Static public function

‘int set_trap_mask (int mask)’

sets up new exception trap mask and returns the previous.

If the mask bit corresponding given exception is set, a floating point exception trap does not occur
for given exception. Such exception is said to be masked exception. Initial exception trap mask
is zero. Remember that more one exception may be occurred simultaneously.

Static public function ‘set sticky status bits’

‘int set_sticky_status_bits (int mask)’

changes sticky status bits and returns the previous bits.

Static public function

‘int get_sticky_status_bits (void)’

11. Package for machine-independent IEEE floating point arithmetic 27

returns mask of current sticky status bits. Only sticky status bits corresponding to masked
exceptions are updated regardless whether a floating point exception trap is taken or not. Initial
values of sticky status bits are zero.

Static public function ‘get status bits’

‘int get_status_bits (void)’

returns mask of status bits. It is supposed that the function will be used in trap on an floating
point exception. Status bits are updated regardless of the current exception trap mask only when
a floating point exception trap is taken. Initial values of status bits are zero.

Static public functions ‘set round’, ‘get round’

‘int set_round (int round_mode)’

which sets up current rounding mode and returns previous mode and

‘int IEEE_get_round (void)’

which returns current mode. Initial rounding mode is round to nearest.

Static public function ‘default floating point exception trap’

‘void default_floating_point_exception_trap (void)’

Originally reaction on occurred trap on an unmasked floating point exception is equal to this
function. The function does nothing. All occurred exceptions can be found in the trap with the
aid of status bits.

Static public function ‘set floating point exception trap’

‘void (*set_floating_point_exception_trap

(void (*function) (void))) (void)’

sets up trap on an unmasked exception. Function given as parameter simulates floating point
exception trap.

Classes ‘IEEE float’, ‘IEEE double’, and ‘IEEE quad’

The classes implements IEEE floating point numbers in object-oriented style. The following func-
tions are described for class ‘IEEE float’. The classes ‘IEEE double’ and ‘IEEE quad’ have analogous
functions (if details are absent) with the same names but for IEEE double and quad numbers.

Public constructors ‘IEEE float’, ‘IEEE double’, ‘IEEE quad’

‘IEEE_float (void)’

‘IEEE_float (float f)’

‘IEEE_double (void)’

‘IEEE_double (float f)’

‘IEEE_quad (void)’

‘IEEE_quad (float f)’

creates IEEE single, IEEE double, or IEEE quad precision numbers with pozitive zero values or
with given value.

11. Package for machine-independent IEEE floating point arithmetic 28

Public function ‘positive zero’

‘void positive_zero (void)’

Given float becomes positive single precision zero constant. There are analogous functions which
return other special case values:

‘negative_zero’,

‘NaN’,

‘trapping_NaN’,

‘positive_infinity’,

‘negative_infinity’,

According to the IEEE standard NaN (and trapping NaN) can be represented by more one bit
string. But all functions of the package generate and use only one its representation created
by function ‘NaN’ (and ‘trapping NaN’). A (quiet) NaN does not cause an Invalid Operation
exception and can be reported as an operation result. A trapping NaN causes an Invalid Operation
exception if used as in input operand to floating point operation. Trapping NaN can not be
reported as an operation result.

Public function ‘is positive zero’

‘int is_positive_zero (void)’

returns 1 if given number is positive single precision zero constant. There are analogous functions
for other special case values:

‘is_negative_zero’,

‘is_NaN’,

‘is_trapping_NaN’,

‘is_positive_infinity’,

‘is_negative_infinity’,

‘is_positive_maximum’ (positive max value),

‘is_negative_maximum’,

‘is_positive_minimum’ (positive min value),

‘is_negative_minimum’,

In spite of that all functions of the package generate and use only one its representation created
by function ‘NaN’ (or ‘trapping NaN’). The function ‘is NaN’ (and ‘trapping NaN’) determines
any representation of NaN.

Public function ‘is normalized’

‘int is_normalized (void)’

returns TRUE if given number is normalized (special case values are not normalized). There is
analogous function

‘is_denormalized’

for determination of denormalized number.

Public operator ‘+’

11. Package for machine-independent IEEE floating point arithmetic 29

‘class IEEE_float operator + (class IEEE_float & op)’

makes single precision addition of floating point numbers. There are analogous operators which
implement other floating point operations:

‘-’,

‘*’,

‘/’,

Results and input exceptions for operands of special cases values (except for NaNs) are described
for addition by the following table

first | second operand

operand|---------------------------------------

| +Inf | -Inf | Others

-------|--------------|-------------|----------

+Inf | +Inf | NaN | +Inf

| none |IEEE_INV(_RO)| none

-------|--------------|-------------|----------

-Inf | NaN | -Inf | -Inf

|IEEE_INV(_RO) | none | none

-------|--------------|-------------|----------

Others | +Inf | -Inf |

| none | none |

Results and input exceptions for operands of special cases values (except for NaNs) are described
for subtraction by the following table

first | second operand

operand|---------------------------------------

| +Inf | -Inf | Others

-------|-------------|--------------|----------

+Inf | NaN | +Inf | +Inf

|IEEE_INV(_RO)| none | none

-------|-------------|--------------|----------

-Inf | -Inf | NaN | -Inf

| none |IEEE_INV(_RO) | none

-------|-------------|--------------|----------

Others | -Inf | +Inf |

| none | none |

Results and input exceptions for operands of special cases values (except for NaNs) are described
for multiplication by the following table

first | second operand

operand|--

| +Inf | -Inf | 0 | Others

-------|----------|-----------|------------|--------

+Inf | +Inf | -Inf | NaN | (+-)Inf

| none | none | IEEE_INV | none

| | | (_RO) |

-------|----------|-----------|------------|--------

11. Package for machine-independent IEEE floating point arithmetic 30

-Inf | -Inf | +Inf | NaN | (+-)Inf

| none | none | IEEE_INV | none

| | | (_RO) |

-------|----------|-----------|------------|--------

0 | NaN | NaN | (+-)0 | (+-)0

| IEEE_INV | IEEE_INV | none | none

| (_RO) | (_RO) | |

-------|----------|-----------|------------|--------

Others | (+-)Inf | (+-)Inf | (+-)0 |

| none | none | none |

Results and input exceptions for operands of special cases values (except for NaNs) are described
for division by the following table

first | second operand

operand|--

| +Inf | -Inf | 0 | Others

-------|-----------|-----------|-----------|--------

+Inf | NaN | NaN | (+-)Inf | (+-)Inf

| IEEE_INV | IEEE_INV | none | none

| (_RO) | (_RO) | |

-------|-----------|-----------|-----------|--------

-Inf | NaN | NaN | (+-)Inf | (+-)Inf

| IEEE_INV | IEEE_INV | none | none

| (_RO) | (_RO) | |

-------|-----------|-----------|-----------|--------

0 | (+-)0 | (+-)0 | NaN | (+-)0

| none | none | IEEE_INV | none

| | | (_RO) |

-------|-----------|-----------|-----------|--------

Others | (+-)0 | (+-)0 | (+-)Inf |

| none | none | IEEE_DZ |

Public operator ‘==’

‘int operator == (class IEEE_float & op)’

compares two floating point numbers on equality and returns 1 or 0 depending on result of the
comparison. There are analogous operators which implement other integer operations:

‘!=’,

‘>’,

‘>=’,

‘<’,

‘<=’.

Results and input exceptions for operands of special cases values are described for equality and
inequality by the following table

first | second operand

operand|---------------------------------------

11. Package for machine-independent IEEE floating point arithmetic 31

| SNaN | QNaN | Others

-------|-------------|--------------|----------

SNaN | FALSE | FALSE | FALSE

| IEEE_INV | IEEE_INV | IEEE_INV

-------|-------------|--------------|----------

QNaN | FALSE | FALSE | FALSE

| IEEE_INV | none | none

-------|-------------|--------------|----------

Others | FALSE | FALSE |

| IEEE_INV | none |

Results and input exceptions for operands of special cases values are described for other compar-
ison operation by the following table

first | second operand

operand|---------------------------------------

| SNaN | QNaN | Others

-------|-------------|--------------|----------

SNaN | FALSE | FALSE | FALSE

| IEEE_INV | IEEE_INV | IEEE_INV

-------|-------------|--------------|----------

QNaN | FALSE | FALSE | FALSE

| IEEE_INV | IEEE_INV | IEEE_INV

-------|-------------|--------------|----------

Others | FALSE | FALSE |

| IEEE_INV | IEEE_INV |

Public functions ‘to string’

‘char *to_string (char *result)’

transform single precision to decimal ascii representation with obligatory integer part (1 digit),
fractional part (of constant length), and optional exponent. Signs minus are present if it is needed.
The special cases IEEE floating point values are represented by strings ‘SNaN’, ‘QNaN’, ‘+Inf’,
‘-Inf’, ‘+0’, and ‘-0’. The functions return value ‘result’. Current round mode does not affect the
resultant ascii representation. The functions output 9 decimal fraction digits for single precision
number, 17 decimal fraction digits for double precision number, and 36 decimal fraction digits for
quad precision number

Public functions ‘to binary string’

‘char *to_binary_string (int base, char *result)’

The functions are analogous to to string but but transform float number into to binary ascii
representation with obligatory integer part (1 digit) of given base, optional fractional part of given
base, and optional binary exponent (decimal number giving power of 2). The binary exponent
starts with character ‘p’ instead of ‘e’. Signs minus are present if it is needed. The special cases
IEEE floating point values are represented by strings ‘SNaN’, ‘QNaN’, ‘+Inf’, ‘-Inf’, ‘+0’, and
‘-0’. The functions return value ‘result’. Value of parameter base should be 2, 4, 8, or 16. Current
round mode does not affect the resultant ascii representation.

11. Package for machine-independent IEEE floating point arithmetic 32

Public functions ‘from string’

‘char *from_string (const char *operand)’

skip all white spaces at the begin of source string and transforms tail of the source string to single
precision floating point number. The number must correspond the following syntax

[’+’ | ’-’] [<decimal digits>]

[’.’ [<decimal digits>]]

[(’e’ | ’E’) [’+’ | ’-’] <decimal digits>]

or must be the following strings ‘SNaN’, ‘QNaN’, ‘+Inf’, ‘-Inf’, ‘+0’, or ‘-0’. The functions return
pointer to first character in the source string after read floating point number. If the string does
not correspond floating point number syntax the result will be zero and functions return the
source string.

The functions can fix output exceptions as described above. Current round mode may affect
resultant floating point number. It is guaranteed that transformation ‘IEEE floating point number
-> string -> IEEE floating point number’ results in the same IEEE floating point number if
round to nearest mode is used. But the reverse transformation ‘string with 9 (or 17) digits -
> IEEE floating point number -> string’ may results in different digits of the fractions in ascii
representation because a floating point number may represent several such strings with differences
in the least significant digit. But the ascii representations are identical when the functions for
IEEE single, double, and quad precision numbers do not fix imprecise result exception or less
than 9 (17 or 36) digits of the fractions in the ascii representations are compared.

Public functions ‘from binary string’

‘char *from_binary_string (const char *operand, int base)’

The functions ar analogous to to string but transform binary representation of the floating point
number. The number must correspond the following syntax

[’+’ | ’-’] [<digits less base>] [’.’ [<digits less base>]]

[(’p’ | ’P’) [’+’ | ’-’] <decimal digits>]

or must be the following strings ‘SNaN’, ‘QNaN’, ‘+Inf’, ‘-Inf’, ‘+0’, or ‘-0’. The functions return
pointer to first character in the source string after read floating point number. If the string does
not correspond floating point number syntax the result will be zero and function returns the
source string. The exponent (after character ‘p’ or ‘P’) defines power of two.

The functions can fix output exceptions as described above. Current round mode can affect
resultant floating point number if there are too many given digits.

Public transformation functions

In class ‘IEEE float’

‘class IEEE_double to_double (void)’

‘class IEEE_quad to_quad (void)’

‘class IEEE_float & from_signed_integer

(int size, const void *integer)’

‘class IEEE_float & from_unsigned_integer

(int size,

const void *unsigned_integer)’

11. Package for machine-independent IEEE floating point arithmetic 33

‘void to_signed_integer (int size, void *integer)’

‘void to_unsigned_integer (int size,

void *unsigned_integer)’

In class ‘IEEE double’

‘class IEEE_float to_single (void)’

‘class IEEE_quad to_quad (void)’

‘class IEEE_double & from_signed_integer

(int size,

const void *integer)’

‘class IEEE_double & from_unsigned_integer

(int size,

const void *unsigned_integer)’

‘void to_signed_integer (int size, void *integer)’

‘void to_unsigned_integer (int size,

void *unsigned_integer)’

In class ‘IEEE quad’

‘class IEEE_float to_single (void)’

‘class IEEE_double to_double (void)’

‘class IEEE_quad & from_signed_integer

(int size,

const void *integer)’

‘class IEEE_quad & from_unsigned_integer

(int size,

const void *unsigned_integer)’

‘void to_signed_integer (int size, void *integer)’

‘void to_unsigned_integer (int size,

void *unsigned_integer)’

Actually no one output exceptions occur during transformation of single precision floating point
number to double (or quad) precision number and of double precision floating point number to
quad precision number. No input exceptions occur during transformation of integer numbers to
floating point numbers. Results and input exceptions for operand of special cases values (and for
NaNs) are described for conversion floating point number to integer by the following table

Operand | Result & Exception

--------------|-------------------

SNaN | 0

|IEEE_INV(_RO)

--------------|-------------------

QNaN | 0

|IEEE_INV(_RO)

--------------|-------------------

+Inf | IMax

| IEEE_INV

--------------|-------------------

-Inf | IMin

| IEEE_INV

--------------|-------------------

11. Package for machine-independent IEEE floating point arithmetic 34

Others |

|

Results and input exceptions for operand of special cases values (and for NaNs) are described for
conversion floating point number to unsigned integer by the following table

Operand | Result & Exception

--------------|-------------------

SNaN | 0

|IEEE_INV(_RO)

--------------|-------------------

QNaN | 0

|IEEE_INV(_RO)

--------------|-------------------

+Inf | IMax

| IEEE_INV

--------------|-------------------

-Inf or | 0

negative number| IEEE_INV

--------------|-------------------

Others |

|

Results and exceptions for NaNs during transformation of floating point numbers to (unsigned)
integers are differed from the ones for operations of addition, multiplication and so on.

Template transformation functions

As mentioned above there are template classes ‘sint’ and ‘unsint’ of package ‘arithm’. Therefore package
‘IEEE’ contains template functions for transformation of between IEEE numbers and integer numbers.
As in package ‘arithm’ if you define macro ‘NO TEMPLATE’ before inclusion of interface file, these
template transformation functions will be absent. There are the following functions:

‘template <int size>

class IEEE_float & IEEE_float_from_unsint

(class IEEE_float & single,

class unsint<size> & unsigned_integer)’

‘template <int size>

class IEEE_float & IEEE_float_from_sint

(class IEEE_float & single,

class sint<size> & integer)

‘template <int size>

void IEEE_float_to_sint (class IEEE_float & single,

class sint<size> & integer)’

‘template <int size>

void IEEE_float_to_unsint

(class IEEE_float & single,

class unsint<size> & unsigned_integer)’

‘template <int size>

class IEEE_double & IEEE_double_from_unsint

12. Ticker package 35

(class IEEE_double & single,

class unsint<size> & unsigned_integer)’

‘template <int size>

class IEEE_double & IEEE_double_from_sint

(class IEEE_double & single,

class sint<size> & integer)

‘template <int size>

void IEEE_double_to_sint (class IEEE_double & single,

class sint<size> & integer)’

‘template <int size>

void IEEE_double_to_unsint

(class IEEE_double & single,

class unsint<size> & unsigned_integer)’

‘template <int size>

class IEEE_quad & IEEE_quad_from_unsint

(class IEEE_quad & single,

class unsint<size> & unsigned_integer)’

‘template <int size>

class IEEE_quad & IEEE_quad_from_sint

(class IEEE_quad & single,

class sint<size> & integer)

‘template <int size>

void IEEE_quad_to_sint (class IEEE_quad & single,

class sint<size> & integer)’

‘template <int size>

void IEEE_quad_to_unsint

(class IEEE_quad & single,

class unsint<size> & unsigned_integer)’

Exceptions for these functions are the same as described above for functions ‘from signed integer’,
‘to signed integer’ and so on.

Important note: All items (they contains word quad or QUAD in their names) relative to IEEE 128 bits
floating point numbers are defined only when macro ‘IEEE QUAD’ is defined. By default ‘IEEE QUAD’ is
not defined. It is made because supporting IEEE 18-bits numbers requires more 100Kb memory.

12 Ticker package

The package ‘ticker’ implements a timer. Timer can be activated or can be stopped. The timer accumulates
execution time only when it is in active state. The interface part of the package is file ‘ticker.h’. The
implementation part is file ‘ticker.cpp’. The interface contains the following external definitions and macros:

Type ‘ticker t’

describes a timer. This type is simply synonym of ‘class ticker’.

13. Earley parser 36

Class ‘ticker’

Timers are objects of this class. The class has the following members:

Public constructor ‘ticker’

‘ticker (void)’

creates new timer. The state of the timer is active.

Public function ‘ticker off’

‘void ticker_off (void)’

stops given timer.

Public function ‘ticker on’

‘void ticker_on (void)’

activates given timer.

Function ‘active time’

‘double active_time (ticker_t ticker)’

returns time in seconds as double float value in which the timer given as the function parameter
was active.

Function ‘active time string’

‘const char *active_time_string (ticker_t ticker)’

returns string representation of time in seconds in which the timer given as the function parameter
was active. Remember that this function must be the single in a C++ expression because the
string is stored in a static variable of the function.

13 Earley parser

The package ‘earley’ implements earley parser. The earley parser implementation has the following features:

• It is sufficiently fast and does not require much memory. This is the fastest implementation of Earley
parser which I know. The main design goal is to achieve speed and memory requirements which are
necessary to use it in prototype compilers and language processors. It parses 30K lines of C program
per second on 500 MHz Pentium III and allocates about 5Mb memory for 10K line C program.

• It makes simple syntax directed translation. So an abstract tree is already the output of Earley parser.

• It can parse input described by an ambiguous grammar. In this case the parse result can be an abstract
tree or all possible abstract trees. Moreover it produces the compact representation of all possible parse
trees by using DAG instead of real trees. This feature can be used to parse natural language sentences.

• It can parse input described by an ambiguous grammar according to the abstract node costs. In this
case the parse result can be an minimal cost abstract tree or all possible minimal cost abstract trees.
This feature can be used to code selection task in compilers.

13. Earley parser 37

• It can make syntax error recovery. Moreover its error recovery algorithms finds error recovery with
minimal number of ignored tokens. It permits to implement parsers with very good error recovery and
reporting.

• It has fast startup. There is no practically delay between processing grammar and start of parsing.

• It has flexible interface. The input grammar can be given by YACC-like description or providing
functions returning terminals and rules.

• It has good debugging features. It can print huge amount of information about grammar, parsing, error
recovery, translation. You can even output the result translation in form for a graphic visualization
program.

The interface part of the parser is file ‘earley.h’. The implementation part is file ‘earley.cpp’. The interface
contains the following external definitions and macros:

Macro ‘EARLEY NIL TRANSLATION NUMBER’

is reserved to be designation of empty node for translation.

Macro ‘EARLEY NO MEMORY’

is error code of the parser. The parser functions return the code when parser can not allocate enough
memory for its work.

Macro ‘EARLEY UNDEFINED OR BAD GRAMMAR’

is error code of the parser. The parser functions return the code when we call parsing without defining
grammar or call parsing for bad defined grammar.

Macro ‘EARLEY DESCRIPTION SYNTAX ERROR CODE’

is error code of the parser. The code is returned when the grammar is defined by description and there
is syntax error in the description.

Macro ‘EARLEY FIXED NAME USAGE’

is error code of the parser. The code is returned when the grammar uses reserved names for terminals
and nonterminals. There are two reserved names ‘$S’ (for axiom) and ‘$eof’ for end of file (input end
marker). The parser adds these symbols and rules with these symbols to the grammar given by user.
So user should not use these names in his grammar.

Macro ‘EARLEY REPEATED TERM DECL’

is error code of the parser. The code is returned when the grammar contains several declarations of
terminals with the same name.

Macro ‘EARLEY NEGATIVE TERM CODE’

is error code of the parser. The code is returned when the grammar terminal is described with negative
code.

Macro ‘EARLEY REPEATED TERM CODE’

is error code of the parser. The code is returned when the two or more grammar terminals are described
with the same code.

13. Earley parser 38

Macro ‘EARLEY NO RULES’

is error code of the parser. The code is returned when the grammar given by user has no rules.

Macro ‘EARLEY TERM IN RULE LHS’

is error code of the parser. The code is returned when grammar rule given by user contains terminal
in left hand side of the rule.

Macro ‘EARLEY INCORRECT TRANSLATION’

is error code of the parser. The code is returned when grammar rule translation is not correct. The
single reason for this is translation of the rule consists of translations of more one symbols in the right
hand side of the rule without forming an abstract tree node.

Macro ‘EARLEY NEGATIVE COST’

is error code of the parser. The code is returned when abstract node has a negative cost.

Macro ‘EARLEY INCORRECT SYMBOL NUMBER’

is error code of the parser. The code is returned when grammar rule translation contains incorrect
symbol number which should be nonnegative number less than rule right hand side length.

Macro ‘EARLEY UNACCESSIBLE NONTERM’

is error code of the parser. The code is returned when there is grammar nonterminal which can not be
derived from axiom.

Macro ‘EARLEY NONTERM DERIVATION’

is error code of the parser. The code is returned when there is grammar nonterminal which can not
derive a terminal string.

Macro ‘EARLEY LOOP NONTERM’

is error code of the parser. The code is returned when there is grammar nonterminal which can derive
only itself. The parser does not work with such grammars.

Macro ‘EARLEY INVALID TOKEN CODE’

is error code of the parser. The code is returned when the parser got input token whose code is different
from all grammar terminal codes.

Enumeration ‘earley tree node type’

describes all possible nodes of abstract tree representing the translation. There are the following
enumeration constants:

‘EARLEY NIL’

the corresponding node represents empty translations.

‘EARLEY ERROR’

the corresponding node represents translation of special terminal ‘error’ (see error recovery).

‘EARLEY TERM’

the corresponding node represents translation of a terminal.

‘EARLEY ANODE’

the corresponding node represents an abstract node.

13. Earley parser 39

‘EARLEY ALT’

the corresponding node represents an alternative of the translation. Such nodes creates only when
there are two or more possible translations. It means that the grammar is ambiguous.

Structure ‘earley tree node’

represents node of the translation. The nodes refer for each other forming DAG (direct acyclic graph)
in general case. The main reason of generating DAG is that some input fragments may have the same
translation, when there are several parsings of input (which is possible only for ambiguous grammars).
But DAG may be created even for unambigous grammar because some nodes (empty and error nodes)
exist only in one exemplar. When such nodes are not created, the translation nodes forms a tree. This
structure has the following members:

Member ‘type’ of type ‘enum earley tree node type’

representing type of the translation node.

Union ‘val’

Depending on the translation node type, one of the union members ‘nil’, ‘error’, ‘term’, ‘anode’,
and ‘alt’ of the structure types described below is used to represent the translation node.

Structure ‘earley nil’

represents empty node. It has no members. Actually the translation is DAG (not tree) in general case.
The empty and error nodes are present only in one exemplar.

Structure ‘earley error’

represents translation of special terminal ‘error’. It has no members. The error node exists only in one
exemplar.

Structure ‘earley term’

represents translation of terminals. It has the following two members:

Integer member ‘code’

representing code of the corresponding terminal.

Member ‘cost’ of type ‘int’

representing cost of the node plus costs of all children if the cost flag is set up. Otherwise, the
value is cost of the abstract node itself.

Member ‘attr’ of type ‘* void’

is reference for the attribute of the corresponding terminal.

Structure ‘earley anode’

represents abstract node. It has the following two members:

Member ‘name’ of type ‘const char *’

representing name of anode as it given in the corresponding rule translation.

Member ‘children’ of type ‘struct earley tree node **’

is array of nodes representing the translations of the symbols given in the rule with the abstract
node.

Structure ‘earley alt’

represents an alternative of the translation. It has the following two members:

13. Earley parser 40

Member ‘node’ of type ‘struct earley tree node *’

representing alternative translation.

Member ‘next’ of type ‘struct earley tree node *’

is reference for the next alternative of translation.

Class ‘earley’

Earley parsers are objects of this class. The class has the following members:

Public constructor ‘earley’

‘earley (void)’

creates new parser. The grammar of the parser is not defined.

Public destructor

‘~earley (void)’

frees all memory allocated for the parser.

Public function ‘error code’

‘int error_code (void)’

returns the last occurred error code (see the possible error codes above) for given parser. If the
function returns zero, no error was found so far.

Public function ‘error message’

‘const char *error_message (void)’

returns detail message about last occurred error. The message always corresponds to the last
error code returned the previous function.

Public function ‘read grammar’

‘int read_grammar (int strict_p,

const char *(*read_terminal) (int *code),

const char *(*read_rule)

(const char ***rhs,

const char **abs_node,

int *anode_cost,

int **transl))’

is one of two functions which tunes the parser to given grammar. The grammar is read with the
aid functions given as parameters.

‘read terminal’ is function for reading terminals. This function is called before function ‘read rule’.
The function should return the name and the code of the next terminal. If all terminals have
been read the function returns NULL. The terminal code should be nonnegative.

‘read rule’ is function called to read the next rule. This function is called after function
‘read terminal’. The function should return the name of nonterminal in the left hand side of
the rule and array of names of symbols in the right hand side of the rule (the array end marker

13. Earley parser 41

should be ‘NULL’). If all rules have been read, the function returns ‘NULL’. All symbol with
name which was not provided function ‘read terminal’ are considered to be nonterminals. The
function also returns translation given by abstract node name and its fields which will be trans-
lation of symbols (with indexes given in array given by parameter ‘transl’) in the right hand side
of the rule. All indexes in ‘transl’ should be different (so the translation of a symbol can not be
represented twice). The end marker of the array should be a negative value. There is a reserved
value of the translation symbol number denoting empty node. It is value defined by macro ‘EAR-
LEY NIL TRANSLATION NUMBER’. If parameter ‘transl’ is ‘NULL’ or contains only the end
marker, translations of the rule will be empty node. If ‘abs node’ is ‘NULL’, abstract node is not
created. In this case ‘transl’ should be null or contain at most one element. This means that the
translation of the rule will be correspondingly empty node or the translation of the symbol in the
right hand side given by the single array element. The cost of the abstract node if given is passed
through parameter ‘anode cost’. If ‘abs node’ is not ‘NULL’, the cost should be greater or equal
to zero. Otherwise the cost is ignored.

There is reserved terminal ‘error’ which is used to mark start point of error recovery.

Nonzero parameter ‘strict p’ value means more strict checking the grammar. In this case, all
nonterminals will be checked on ability to derive a terminal string instead of only checking axiom
for this.

The function returns zero if it is all ok. Otherwise, the function returns the error code occured.

Public function ‘parse grammar’

‘int parse_grammar (int strict_p, const char *description)’

is another function which tunes the parser to given grammar. The grammar is given by string
‘description’. The description is similiar YACC one. It has the following syntax:

file : file terms [’;’]

| file rule

| terms [’;’]

| rule

terms : terms IDENTIFIER [’=’ NUMBER]

| TERM

rule : IDENTIFIER ’:’ rhs [’;’]

rhs : rhs ’|’ sequence [translation]

| sequence [translation]

sequence :

| sequence IDENTIFIER

| sequence C_CHARACTER_CONSTANT

translation : ’#’

| ’#’ NUMBER

| ’#’ ’-’

| ’#’ IDENTIFIER ’(’ numbers ’)’

numbers :

| numbers NUMBER

13. Earley parser 42

| numbers ’-’

So the description consists of terminal declaration and rules sections.

Terminal declaration section describes name of terminals and their codes. Terminal code is op-
tional. If it is omitted, the terminal code will the next free code starting with 256. You can
declare terminal several times (the single condition its code should be the same).

Character constant present in the rules is a terminal described by default. Its code is always code
of the character constant.

Rules syntax is the same as YACC rule syntax. The single difference is an optional translation
construction starting with ‘#’ right after each alternative. The translation part could be a single
number which means that the translation of the alternative will be the translation of the symbol
with given number (symbol numbers in alternative starts with 0). Or the translation can be
empty or ‘-’ which mean empty node. Or the translation can be abstract node with given name,
optional cost, and with fields whose values are the translations of the alternative symbols with
numbers given in parentheses after the abstract node name. You can use ‘-’ in abstract node to
show that empty node should be used in this place. If the cost is absent it is believed to be one.
The cost of terminal, error node, and empty node is always zero.

There is reserved terminal ‘error’ which is used to mark start point of error recovery.

Public function ‘set lookahead level’

‘int set_lookahead_level (int level)’

sets up level of usage of look ahead in parser work. Value zero means no usage of lookaheads at
all. Lookahead with static (independent on input tokens) context sets in parser situation (value
1) gives the best results with the point of view of space and speed, lookahead with dynamic
(dependent on input tokens) context sets in parser situations (all the rest parameter values) does
slightly worse, and no usage of lookaheads does the worst. The default value is 1 (lookahead with
static situation context sets). The function returns the previously set up level. If the level value
is negative, zero is used instead of it. If the value is greater than two, two is used in this case.

Public function ‘set debug level’

‘int set_debug_level (int level)’

sets up level of debugging information output to ‘stderr’. The more level, the more information is
output. The default value is 0 (no output). The debugging information includes statistics, result
translation tree, grammar, parser sets, parser sets with all situations, situations with contexts.
The function returns the previously set up debug level. Setting up negative debug level results in
output of translation for program ‘dot’ of graphic visualization package ‘graphviz’.

Public function ‘set one parse flag’

‘int set_one_parse_flag (int flag)’

sets up building only one translation tree (parameter value 0) or all parse trees for ambiguous
grammar for which several parsings are possible. For unambiguous grammar the flag does not
affect the result. The default value is 1. The function returns the previously used flag value.

Public function ‘earley set cost flag’

13. Earley parser 43

‘int set_cost_flag (int flag)’

sets up building only translation tree (trees if we set up one parse flag to 0) with minimal cost.
For unambiguous grammar the flag does not affect the result. The default value is 0. The function
returns the previously used flag value.

Public function ‘set error recovery flag’

‘int set_error_recovery_flag (int flag)’

sets up internal flag whose nonzero value means making error recovery if syntax error occurred.
Otherwise, syntax error results in finishing parsing (although function ‘syntax error’ in function
‘parse’ will be called once). The default value is 1. The function returns the previously used flag
value.

Public function ‘set recovery match’

‘int set_recovery_match (int n_toks)’

sets up recovery parameter which means how much subsequent tokens should be successfully
shifted to finish error recovery. The default value is 3. The function returns the previously used
flag value.

Public function ‘parse’

‘int parse (int (*read_token) (void **attr),

void (*syntax_error)

(int err_tok_num, void *err_tok_attr,

int start_ignored_tok_num,

void *start_ignored_tok_attr,

int start_recovered_tok_num,

void *start_recovered_tok_attr),

void *(*parse_alloc) (int nmemb),

void (*parse_free) (void *mem),

struct earley_tree_node **root,

int *ambiguous_p)’

is major parser function. It parses input according the grammar. The function returns the error
code (which can be also returned by ‘error code’). If the code is zero, the function will also return
root of the parse tree through parameter ‘root’. The tree representing the translation. Value
passed through ‘root’ will be ‘NULL’ only if syntax error was occurred and error recovery was
switched off. The function sets up flag passed by parameter ‘ambiguous p’ if we found that the
grammar is ambiguous (it works even we asked only one parse tree without alternatives).

Function ‘read token’ provides input tokens. It returns code the next input token and its attribute.
If the function returns negative value we’ve read all tokens.

Function ‘syntax error’ called when synatctic error has been found. It may print an error
message about syntax error which occurred on token with number ‘err tok num’ and attribute
‘err tok attr’. The following four parameters describes made error recovery which ignored tokens
starting with token given by 3rd and 4th parameters. The first token which was not ignored is de-
scribed by the last parameters. If the number of ignored tokens is zero, the all parameters describes
the same token. If the error recovery is switched off (see comments for ‘set error recovery flag’),

13. Earley parser 44

the third and the fifth parameters will be negative and the forth and the sixth parameters will be
‘NULL’.

Function ‘parse alloc’ is used by Earley parser to allocate memory for parse tree representation
(translation). After calling the class destructor we free all memory allocated for the parser. At
this point it is convenient to free all memory but parse tree. Therefore we require the following
function. So the caller will be responsible to allocate and free memory for parse tree representation
(translation). But the caller should not free the memory until destructor is called for the parser.
The function may be called even during reading the grammar not only during the parsing. only
during the parsing. Function ‘parse free’ is used by the parser to free memory allocated by
‘parse alloc’. If it is ‘NULL’, the memory is not freed.

	Introduction
	Package for allocating memory with fixing some allocation errors
	Package for work with variable length objects
	Package for work with stacks of objects
	Package for work with hash tables
	Package for work with source code positions
	Package for output of compiler messages
	Package for work with command line
	Package for work with bit strings
	Package for machine-independent arbitrary precision integer arithmetic
	Package for machine-independent IEEE floating point arithmetic
	Ticker package
	Earley parser

