
OKA (pipeline hazards description translator)

Vladimir Makarov, vmakarov@users.sourceforge.net Apr 5, 2001

This document describes OKA (translator of a processor pipeline hazards description into code for fast recognition

of pipeline hazards).

Contents

1 Introduction 1

2 Pipeline hazards description language 1

2.1 Layout of pipeline hazards description . 1

2.2 Declarations . 2

2.3 Expressions . 3

3 Generated code 4

3.1 C++ code . 4

3.2 C code . 5

4 OKA Usage 6

5 Implementation 8

6 Future of OKA development 8

7 Appendix 1 - Syntax of pipeline Hazards Description (YACC grammar) 8

8 Appendix 2 - Description of Alpha architecture (EV5 version) 10

9 Appendix 3 - Output of pipeline Hazards Description Translator 14

1 Introduction

OKA is a translator of a processor pipeline hazards description (PHD) into code for fast recognition of pipeline
hazards. Instruction execution can be started only if its issue conditions are satisfied. If not, instruction is
interlocked until its conditions are satisfied. Such an ”interlock (pipeline) delay” causes interruption of the
fetching of successor instructions (or demands NOP instructions, e.g. for MIPS).

There are two major kind of interlock delays in modern superscalar RISC processors. The first one is data
dependence delay. The instruction execution is not started until all source data has been evaluated by

2. Pipeline hazards description language 2

previous instructions (there are more complex cases when the instruction execution starts even when the
data are not evaluated but will be ready till given time after the instruction execution start). Taking into
account of such kind delay is simple. Data dependence (true, output, and anti-dependence) delay between
two instructions is given by constant. In the most cases this approach is adequate. The second kind of
interlock delay is reservation delay. Two such way dependent instructions under execution will be in need
of shared processors resources, i.e. buses, internal registers, and/or functional units, which are reserved for
some time. Taking into account of this kind of delay is complex especially for modern RISC processors. The
goal of OKA is to generate code for fast recognition of such kind delay (pipeline hazards).

2 Pipeline hazards description language

A pipeline hazards description describes mainly reservations of processor functional units by an instruction
during its execution. The instruction reservations are given by regular expression describing nondeterministic
finite state automaton (NDFA).

2.1 Layout of pipeline hazards description

Pipeline hazards description structure has the following layout which is similar to one of YACC file.

DECLARATIONS

%%

EXPRESSIONS

%%

ADDITIONAL C/C++ CODE

The ‘%%’ serves to separate the sections of description. All sections are optional. The first ‘%%’ starts
section of rules and is obligatory even if the section is empty, the second ‘%%’ may be absent if section of
additional C/C++ code is absent too.

The section of declarations contains declarations of functional units and instructions of a processor. The
section also may contain declarations of automata on which result automaton are split in order to decrease
size of tables needed for fast recognition of pipeline hazards. And finally the section may contain subsections
of code on C/C++.

The next section contains expressions list which describes functional units reservations by instructions.
Regular expressions in general case correspond to nondeterministic final state automaton. The expression list
can be empty. In this case the result automaton can contains only arcs marked by special token corresponding
advancing cycle.

The additional C/C++ code can contain any C/C++ code you want to use. Often functions which are not
generated by the translator but are needed to work of the instruction scheduler go here. This code without
changes is placed at the end of file generated by the translator.

2.2 Declarations

The section of declarations may contain the following construction:

%instruction IDENTIFIER ...

2. Pipeline hazards description language 3

Such constructions declare instructions (or instruction class) of processor. All instructions must be defined
in constructions of such kind. The same instruction identifier can be defined repeatedly. There is anal-
ogous construction which can serves to describe frequently repeated functional units reservations by real
instructions.

%reservation IDENTIFIER ...

The functional unit declarations has the following form:

%unit <automaton identifier> IDENTIFIER ...

The construction is used to describe functional units of given processor. Optional identifier in angle brackets
describes how to split result automaton onto smaller automata. Each such automaton will contain states
corresponding to only reservations of functional units described with given automaton identifier. The same
unit identifier can be defined repeatedly with the same automaton identifier.

Sometimes it is necessary to describe that some units can not be reserved simultaneously, e.g. floating point
unit is pipelined but can execute only single or double floating point operation. The following construction
is useful in such situations

%exclude IDENTIFIER ... : IDENTIFIER ...

The functional units left to the semicolon can not be reserved with the units right to the semicolon (and vise
versa) on the same cycle. All units in the construction should belong the same automata.

All automaton identifiers present in unit declarations must be declared in the following construction

%automaton IDENTIFIER ...

If there is an automaton declaration, all unit declarations must be with a declared automaton. There may
be also the following constructions in the declaration section

%local {

C/C++ DECLARATIONS

}

%import {

C/C++ DECLARATION

}

and

%export {

C/C++ DECLARATION

}

which contain any C/C++ declarations (types, variables, macros, and so on) used in sections. The local
C/C++ declarations are inserted at the begin of generated implementation file (see pipeline hazards descrip-
tion interface) but after include-directive of interface file. C/C++ declarations which start with ‘%import’
are inserted at the begin of generated interface file. C/C++ declarations which start with ‘%export’ are
inserted at the end of generated interface file. For example, such C/C++ code may contain definitions of of
external variables and functions which refer to definitions generated by OKA. All C/C++ declarations are
placed in the same order as in the section of declarations.

2. Pipeline hazards description language 4

2.3 Expressions

The section of declarations is followed by section of expressions. A expression is described the following
construction

instruction or reservation identifiers : expression;

This construction means that instructions given in the left part reserves units according to the expression.
In the case of reservation identifier, it is usually used for describing sub-expression frequently used in other
expressions. Of course, each declared instruction and reservation must be present in only one such construc-
tion. The expression describes non-deterministic finite state automaton (NDFA) in general case and can
contain the following forms:

EXPRESSION EXPRESSION

EXPRESSION + EXPRESSION

EXPRESSION * NUMBER

EXPRESSION | EXPRESSION

%nothing

UNIT OR RESERVATION IDENTIFIER

[EXPRESSION]

(EXPRESSION)

Binary operator ‘ ’ (blank) and ‘+’ describes sequential reservations given by the expressions. In the first
case the first unit in the right expression is reserved on the next cycle after the reservation of the last unit in
left expression (so called concatenation with cycle advancing). The reservation of an unit is described simply
by the unit identifier. In the second case the first unit in the right expression is reserved on the same cycle
after the reservation of the last unit in left expression (so called concatenation without cycle advancing).
Sometimes it is necessary to describe absence of unit reservations during several cycles. The construction
‘%nothing’ serves for this purpose. ‘%nothing’ can be in the same place as an unit identifier.

Reservation identifier is simply changed by the construction ‘(the corresponding reservation expression)’.

The construction ‘EXPRESSION * NUMBER’ is simply abbreviation of ‘EXPRESSION EXPRESSION ...’
where the expression is repeated by given positive number times.

The construction ‘EXPRESSION | EXPRESSION’ means that the instructions reserve units according to
the left or to the right expression (so called alternative). If an unit is present only on one alternative it
should belong to the same automaton as units on other alternative. OKA checks this and reports if it is not
true.

All binary operators have the left associativity and the following priority:

‘*’ - the highest priority

‘+’ and ‘ ’ - the middle priority

‘|’ - the lowest priority

The construction ‘[EXPRESSION]’ serves for describing optional construction and is simply abbreviation of
the following construction ‘ | EXPRESSION’.

The parentheses are used to grouping sub-expressions in another order then the one given by priorities and
associativities of operators.

Full YACC syntax (with some hints in order to transform into LALR (1)-grammar) of pipeline hazards
description language is placed in Appendix 1.

3. Generated code 5

3 Generated code

A specification as described in the previous section is translated by OKA (pipeline hazards description
translator) into interface and implementation files having the same names as one of specification file and
correspondingly suffixes ‘.h’ and ‘.c’ (C code) or ‘.cpp’ (C++ code).

3.1 C++ code

Interface file of PHD consists of the following definitions:

Class ‘OKA chip’.

Object of the class describes current state of processor. The class has the following public members:

1. Function

‘int OKA_transition (int OKA_instruction)’

The function has one parameter: instruction code. If corresponding instruction can be started by
the processor in its current state, the function returns 1 and the object (processor) changes own
state which reflects starting the execution of given instruction. In the opposite case, when the
instruction can not be started, the function returns 0 and the object (processor) does not change
own state.

2. Function

‘int OKA_is_dead_lock (void)’

The function returns 1 (TRUE) when transition from the corresponding processor state is not
possible on any instruction. The single way to change object (processor) state is to advance time
(on one cycle) with the aid of special pseudo-instruction code ‘OKA ADVANCE CYCLE’. For
example, dead lock state for dual-issue processor can be state reflecting starting two instructions
on a cycle.

3. Function

‘void OKA_reset (void)’

The function sets up the object (processor) in initial state. No any processor unit is busy in the
state.

4. Constructor

‘OKA_chip (void)’

The constructor simply calls function ‘OKA reset’.

Macros or enumeration (see option ‘-enum’)

which declare instruction codes. Macros or enumeration constants have the same name as
one in PHD and prefix ‘OKA ’ (see also option ‘-p’). OKA always generates additional code
‘OKA ADVANCE CYCLE’. If such pseudo-instruction starts, the processor make transition into the
state reflecting advancing time on one cycle. It is guaranteed that there is always transition from any
processor state on given pseudo-instruction. Macros or enumeration are generated in interface file only
if option ‘-export’ is present on OKA command line. By default, the macros or the enumeration are
generated in the implementation file. Usually, the last case means that the scheduler code is placed
PHD in additional C/C++ code.

4. OKA Usage 6

3.2 C code

Interface file of PHD consists of the following definitions of generated type and functions:

1. Structure ‘OKA chip’ which describes state of the processor.

2. Type definition ‘OKA chip’ which is simply structure ‘OKA chip’.

3. Function

‘int OKA_transition (OKA_chip *OKA_chip,

int OKA_instruction)’

The function has two parameter: pointer to structure describing the processor state and instruction
code. If corresponding instruction can be started by the processor in its current state, the function
returns 1 and the structure is changed in order to reflects starting the execution of given instruction.
In the opposite case, when the instruction can not be started, the function returns 0 and the structure
is not changed.

4. Function

‘int OKA_is_dead_lock (OKA_chip *OKA_chip)’

The function returns 1 (TRUE) when transition from the processor state given by the structure is not
possible on any instruction. The single way to change processor state is to advance time (on one cycle)
with the aid of special pseudo-instruction code ‘OKA ADVANCE CYCLE’. For example, dead lock
state for dual-issue processor can be state reflecting starting two instructions on a cycle.

5. Function

‘void OKA_reset (OKA_chip *OKA_chip)’

The function sets up the structure (processor) in initial state. No any processor unit is busy in the
state.

6. Macros or enumeration (see option ‘-enum’) which declare instruction codes. Macros or enumeration
constants have the same name as one in PHD and prefix ‘OKA ’ (see also option ‘-p’). OKA always
generates additional code ‘OKA ADVANCE CYCLE’. If such pseudo-instruction starts, the processor
make transition into the state reflecting advancing time on one cycle. It is guaranteed that there is
always transition from any processor state on given pseudo-instruction. Macros or enumeration are
generated in interface file only if option ‘-export’ is present on OKA command line. By default, the
macros or the enumeration are generated in the implementation file. Usually, the last case means that
the scheduler code is placed PHD in additional C/C++ code.

4 OKA Usage

OKA(1) User Manuals OKA(1)

NAME

oka - pipeline Hazards Description Translator

4. OKA Usage 7

SYNOPSIS

oka [-c++ -debug -enum -export -no-minimization -split number -pprefix

-v] specification-file

DESCRIPTION

OKA generates code for fast recognition of pipeline hazards of proces-

sor which is described in specification file. The specification file

must have suffix ‘.oka’

The generated code consists of interface and implementation files hav-

ing the same names as one of specification file and correspondingly

suffixes ‘.h’ and ‘.c’ (C code) or ‘.cpp’ (C++ code).

Full documentation of OKA is in OKA User’s manual.

OPTIONS

The options which are known for OKA are:

-c++ OKA generates C++ code instead of C code (default).

-debug OKA creates code for output of debugging information during exe-

cution of the generated code.

-enum OKA generates instruction codes as enumeration constant. By

default OKA generates instructions code as macro definition.

-export

OKA generates macros defining identifiers of instructions in the

interface file (instead of in the implementation file).

-no-minimization

OKA does not minimization of generated deterministic finite

state automaton (DFA).

-split OKA makes automatic splitting automaton on given number automata

in order to decrease sizes of generated tables. The option is

taken into account only if constructions ‘%unit’ are absent in

the specification file. This option has not been implemented

yet.

-pprefix

Generated code uses ‘prefix’ instead of ‘OKA’ for names of the

generated objects.

-time OKA outputs detail time statistics of its work into stderr.

-v OKA creates description file which contains description of

result automaton and statistics information. The file will have

5. Implementation 8

the same name as one of given specification file and suffix

‘.output’ into standard stream.

FILES

file.oka

OKA specification file

file.c

generated C implementation file

file.cpp

generated C++ implementation file

file.h

generated interface file

There are no any temporary files used by OKA.

ENVIRONMENT

There are no environment variables which affect OKA behavior.

DIAGNOSTICS

OKA diagnostics is self-explanatory.

AUTHOR

Vladimir N. Makarov, vmakarov@users.sourceforge.net

SEE ALSO

msta(1), shilka(1), sprut(1), nona(1). OKA manual.

BUGS

Please, report bugs to cocom-bugs@lists.sourceforge.net.

COCOM 5 APR 2001 OKA(1)

5 Implementation

The OKA is implemented with other COCOM tools. NDFA(s) is created at the begin. After that NDFA(s) is
transformed to DFA(s). DFA(s) is than minimized. Tables representing DFA(s) are compacted with the aid
of comb-vector method. To decrease size of the generated tables also instructions are divided on equivalence
classes. It is especially important when automaton is split on several automata.

6 Future of OKA development

1. Automatic splitting automaton on given number automata.

2. Code for determining what units are reserved in given state. It may be necessary in some very complex
cases when given model is not sufficient for accurate recognition of pipeline hazards.

7. Appendix 1 - Syntax of pipeline Hazards Description (YACC grammar) 9

3. Possibility for generation of reverse automaton. Which can be used to insert instruction in already
scheduled basic block, e.g. for trace scheduling or scheduling super-blocks.

4. Expansion of model of description of pipeline hazards in order to enable descriptions of processors with
dynamic execution and register renaming.

7 Appendix 1 - Syntax of pipeline Hazards Description (YACC

grammar)

%token PERCENTS COMMA COLON SEMICOLON LEFT_PARENTHESIS RIGHT_PARENTHESIS

LEFT_BRACKET RIGHT_BRACKET LEFT_ANGLE_BRACKET RIGHT_ANGLE_BRACKET

PLUS BAR STAR

LOCAL IMPORT EXPORT EXCLUSION AUTOMATON

UNIT NOTHING INSTRUCTION RESERVATION

%token IDENTIFIER NUMBER CODE_INSERTION ADDITIONAL_C_CODE

%start description

%%

description : declaration_part PERCENTS

expression_definition_list ADDITIONAL_C_CODE

;

declaration_part :

| declaration_part declaration

;

declaration : identifier_declaration

| LOCAL CODE_INSERTION

| IMPORT CODE_INSERTION

| EXPORT CODE_INSERTION

;

identifier_declaration : instruction_declaration

| reservation_declaration

| unit_declaration

| automaton_declaration

| exclusion_clause

;

instruction_declaration : INSTRUCTION

| instruction_declaration IDENTIFIER

;

reservation_declaration : RESERVATION

| reservation_declaration IDENTIFIER

7. Appendix 1 - Syntax of pipeline Hazards Description (YACC grammar) 10

;

unit_declaration : UNIT optional_automaton_identifier

| unit_declaration IDENTIFIER

;

exclusion_clause : EXCLUSION identifier_list COLON identifier_list

;

identifier_list : IDENTIFIER

| identifier_list IDENTIFIER

;

optional_automaton_identifier :

| LEFT_ANGLE_BRACKET

IDENTIFIER RIGHT_ANGLE_BRACKET

;

automaton_declaration : AUTOMATON

| automaton_declaration IDENTIFIER

;

expression_definition_list

:

| expression_definition_list expression_definition

;

expression_definition : instruction_or_reservation_identifier_list COLON

expression SEMICOLON

;

instruction_or_reservation_identifier_list

: instruction_or_reservation_identifier

| instruction_or_reservation_identifier_list

COMMA instruction_or_reservation_identifier

;

instruction_or_reservation_identifier : IDENTIFIER

;

expression : expression expression

| expression PLUS expression

| expression STAR NUMBER

| LEFT_PARENTHESIS expression RIGHT_PARENTHESIS

| LEFT_BRACKET expression RIGHT_BRACKET

| expression BAR expression

| unit_or_reservation_identifier

| NOTHING

;

unit_or_reservation_identifier : IDENTIFIER

8. Appendix 2 - Description of Alpha architecture (EV5 version) 11

;

8 Appendix 2 - Description of Alpha architecture (EV5 version)

/* Problems of the description:

o Is it necessary divider_write_back if floating divide has not

fixed latency? */

%automaton integer multiply float

%unit <integer> e0 e1 load_store_1 load_store_2 store_reservation

%unit <multiply> multiplier multiplier_write_back

%unit <float> fa fm float_divider divider_write_back

%instruction LDL LDQ LDQ_U LDS LDT STL STQ STQ_U STS STT

LDL_L LDQ_L MB WMB STL_C STQ_C FETCH

RS RC HW_MFPR HW_MTPR BLBC BLBS BEQ BNE BLT BLE BGT BGE

FBEQ FBNE FBLT FBLE FBGT FBGE

JMP JSR RET JSR_COROUTINE BSR BR HW_REI CALLPAL

LDAH LDA ADDL ADDLV ADDQ ADDQV S4ADDL S4ADDQ S8ADDL S8ADDQ

S4SUBL S4SUBQ S8SUBL S8SUBQ SUBL SUBLV SUBQ SUBQV

AND BIC BIS ORNOT XOR EQV

SLL SRA SRL EXTBL EXTWL EXTLL EXTQL

EXTWH EXTLH EXTQH INSBL INSWL INSLL INSQL INSWH INSLH INSQH

MSKBL MSKWL MSKLL MSKQL MSKWH MSKLH MSKQH ZAP ZAPNOT

CMOVEQ CMOVNE CMOVLBS CMOVLT CMOVGE CMOVLBC CMOVLE CMOVGT

CMPEQ CMPLT CMPLE CMPULT CMPULE CMPBGE

MULL MULLV MULL1 MULLV1 MULL2 MULLV2

MULQ MULQV MULQ1 MULQV1 MULQ2 MULQV2 UMULH UMULH1 UMULH2

ADDS ADDT SUBS SUBT CPYSN CPYSE CVTLQ CVTQL CVTTQ

FCMOVEQ FCMOVNE FCMOVLE FCMOVLT FCMOVGE FCMOVGT

DIVS DIVT MULS MULT CPYS RPCC TRAPB UNOP

%%

/* Class LD:

o An instruction of class LD can not be simulteniously issued with

an instruction of class ST;

o An instruction of class LD can not be issued in the second cycle

after an instruction of class ST is issued. */

LDL, LDQ, LDQ_U, LDS, LDT:

(e0 + multiplier_write_back | e1) + (load_store_1 | load_store_2)

+ store_reservation

;

/* Class ST:

o An instruction of class LD can not be simulteniously issued with

8. Appendix 2 - Description of Alpha architecture (EV5 version) 12

an instruction of class ST;

o An instruction of class LD can not be issued in the second cycle

after an instruction of class ST is issued. */

STL, STQ, STQ_U, STS, STT:

e0 + multiplier_write_back + load_store_1 + load_store_2 %nothing

store_reservation

;

/* Class MBX */

LDL_L, LDQ_L, MB, WMB, STL_C, STQ_C, FETCH:

e0 + multiplier_write_back

;

/* Class RX */

RS, RC: e0 + multiplier_write_back

;

/* Class MXPR */

HW_MFPR, HW_MTPR: %nothing

;

/* Class IBR */

BLBC, BLBS, BEQ, BNE, BLT, BLE, BGT, BGE: e1

;

/* Class FBR */

FBEQ, FBNE, FBLT, FBLE, FBGT, FBGE: fa

;

/* Class JSR */

JMP, JSR, RET, JSR_COROUTINE, BSR, BR, HW_REI, CALLPAL: e1

;

/* Class IADD */

LDAH, LDA, ADDL, ADDLV, ADDQ, ADDQV, S4ADDL, S4ADDQ, S8ADDL, S8ADDQ,

S4SUBL, S4SUBQ, S8SUBL, S8SUBQ, SUBL, SUBLV, SUBQ, SUBQV:

e0 + multiplier_write_back

;

/* Class ILOG */

AND, BIC, BIS, ORNOT, XOR, EQV : (e0 + multiplier_write_back | e1)

;

/* Class SHIFT */

SLL, SRA, SRL, EXTBL, EXTWL, EXTLL, EXTQL,

EXTWH, EXTLH, EXTQH, INSBL, INSWL, INSLL, INSQL, INSWH, INSLH, INSQH,

MSKBL, MSKWL, MSKLL, MSKQL, MSKWH, MSKLH, MSKQH, ZAP, ZAPNOT:

e0 + multiplier_write_back

;

/* Class CMOV */

8. Appendix 2 - Description of Alpha architecture (EV5 version) 13

CMOVEQ, CMOVNE, CMOVLBS, CMOVLT, CMOVGE, CMOVLBC, CMOVLE, CMOVGT:

(e0 + multiplier_write_back | e1)

;

/* Class ICMP */

CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE, CMPBGE:

(e0 + multiplier_write_back | e1)

;

/* Class IMULL:

o Thirty-two-bit multiplies have an 8-cycle latency, and the

multiplier can start a second multiply after 4 cycles, provided

that the second multiply has no data dependency on the first;

o No instruction can be issued to pipe e0 exactly two cycles before

an integer multiplication complete. */

MULL, MULLV: e0 + multiplier_write_back + multiplier*4 %nothing*2

multiplier_write_back

;

/* Class IMULL with 1 cycle delay */

MULL1, MULLV1: e0 + multiplier_write_back %nothing + multiplier*4

%nothing*2 multiplier_write_back

;

/* Class IMULL with 2 cycles delay */

MULL2, MULLV2: e0 + multiplier_write_back %nothing*2 + multiplier*4

%nothing*2 multiplier_write_back

;

/* Class IMULQ:

o Sixty-for-bit signed multiplies have an 12-cycle latency, and the

multiplier can start a second multiply after 8 cycles, provided

that the second multiply has no data dependency on the first;

o No instruction can be issued to pipe e0 exactly two cycles before

an integer multiplication complete. */

MULQ, MULQV: e0 + multiplier_write_back + multiplier*8 %nothing*2

multiplier_write_back

;

/* Class IMULQ with 1 cycle delay */

MULQ1, MULQV1: e0 + multiplier_write_back %nothing + multiplier*8

%nothing*2 multiplier_write_back

;

/* Class IMULQ with 2 cycles delay */

MULQ2, MULQV2: e0 + multiplier_write_back %nothing*2 + multiplier*8

%nothing*2 multiplier_write_back

;

/* Class IMULH

o Sixty-for-bit unsigend multiplies have an 14-cycle latency, and

8. Appendix 2 - Description of Alpha architecture (EV5 version) 14

the multiplier can start a second multiply after 8 cycles, provided

that the second multiply has no data dependency on the first;

o No instruction can be issued to pipe e0 exactly two cycles before

an integer multiplication complete. */

UMULH: e0 + multiplier_write_back + multiplier*8 %nothing*4

multiplier_write_back

;

/* Class IMULH with 1 cycle delay */

UMULH1: e0 + multiplier_write_back %nothing + multiplier*8 %nothing*4

multiplier_write_back

;

/* Class IMULH with 2 cycles delay */

UMULH2: e0 + multiplier_write_back %nothing*2 + multiplier*8 %nothing*4

multiplier_write_back

;

/* Class FADD */

ADDS, ADDT, SUBS, SUBT, CPYSN, CPYSE, CVTLQ, CVTQL, CVTTQ,

FCMOVEQ, FCMOVNE, FCMOVLE, FCMOVLT, FCMOVGE, FCMOVGT:

fa + divider_write_back

;

/* Class FDIV:

o 2.4 bits per cycle average rate. The next floating divide can be

issued in the same cycle the result of the previous divide’s result

is avialable.

o Instruction issue to teh add pipeline continues whaile a divide

is in progress until the result is ready. At that point the issue

stage in the instruction umit stalls one cycle to allow the

quotient to be sent the round adder and then be written into the

register file. */

DIVS: fa + float_divider*18 + divider_write_back

;

/* Class FDIV:

o 2.4 bits per cycle average rate. The next floating divide can be

issued in the same cycle the result of the previous divide’s result

is avialable.

o Instruction issue to teh add pipeline continues whaile a divide

is in progress until the result is ready. At that point the issue

stage in the instruction umit stalls one cycle to allow the

quotient to be sent the round adder and then be written into the

register file. */

DIVT: fa + float_divider*30 + divider_write_back

;

/* Class FMUL */

MULS, MULT: fm

;

9. Appendix 3 - Output of pipeline Hazards Description Translator 15

/* Class FCPYS */

CPYS: (fa + divider_write_back | fm)

;

/* Class MISC */

RPCC, TRAPB: e0 + multiplier_write_back

;

/* Class UNOP */

UNOP: %nothing

;

9 Appendix 3 - Output of pipeline Hazards Description Translator

The following output was generated under Linux 1.2.8 on Compaq Aero (Intel SX-25, 8MB memory).

bash$ time oka -v alpha-ev5.oka

Automaton ‘integer’

36 NDFA states, 152 NDFA arcs

32 DFA states, 138 DFA arcs

24 minimal DFA states, 118 minimal DFA arcs

146 all instructions 7 instruction equivalence classes

Automaton ‘multiply’

186 NDFA states, 2283 NDFA arcs

261 DFA states, 2958 DFA arcs

236 minimal DFA states, 2748 minimal DFA arcs

146 all instructions 13 instruction equivalence classes

Automaton ‘float’

180 NDFA states, 720 NDFA arcs

209 DFA states, 867 DFA arcs

149 minimal DFA states, 687 minimal DFA arcs

146 all instructions 8 instruction equivalence classes

606 all allocated states, 3802 all allocated arcs

1281 all allocated alternative states

2177 all comb vector elements, 4428 all transition table elements

7.90user 1.09system 0:10.39elapsed 86%CPU (0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (69major+247minor)pagefaults 0swaps

	Introduction
	Pipeline hazards description language
	Layout of pipeline hazards description
	Declarations
	Expressions

	Generated code
	C++ code
	C code

	OKA Usage
	Implementation
	Future of OKA development
	Appendix 1 - Syntax of pipeline Hazards Description (YACC grammar)
	Appendix 2 - Description of Alpha architecture (EV5 version)
	Appendix 3 - Output of pipeline Hazards Description Translator

