StarPU Handbook - StarPU Performances

for StarPU 1.4.2

Generated by Doxygen.

1 Organization

2 Benchmarking StarPU

21 Task Size Overhead e
2.2 Data Transfer Latency o L e
2.3 Matrix-Matrix Multiplication e
2.4 Cholesky Factorization e e
25 LU Factorization e

2.6 Simulated Benchmarks e

3 Online Performance Tools

3.1 On-line Performance Feedback
3.1.1 Enabling On-line Performance Monitoring
3.1.2 Pertask Feedback
3.1.3 Per-codelet Feedback
3.1.4 Per-worker Feedback
3.1.5Bus-related Feedback L
3.1.6 MPl-related Feedback

3.2 Task And Worker Profiling

3.3 Performance Model Example e

3.4 Performance Monitoring Counters L e
3.4.10bjectives L e e e e
B42Entities. e e e
3.4.3 Implementation Details
3.4.4 Exported CouNters e e e e e
3.4.5Sequence of operations L

3.5 Performance Steering Knobs L
3.5.10bjectives e e e e
3.5.2Entities. e e
3.5.3 Application Programming Interfaceo
3.5.4 Implementation Details
3.5.5 Exported SteeringKnobs

3.5.6 Sequence of operations L

4 Offline Performance Tools

4.1 Generating Traces With FxT o o e
41.1 Creatinga Gantt Diagram
4.1.2 Creating a DAG With Graphviz
413 Getting Task Details
4.1.4 Getting Scheduling Task Details
4.1.5 Monitoring Activity
4.1.6 Getting Modular Schedular Animation L
4.1.7 Analyzing Time Between MPI Data Transferand Useby Tasks

o O O O o1 o1 »;

© © N N N NN

10
13
13
13
14
15
15
16
16
16
17
17
18
18

Generated by Doxygen

4.1.8 Number of events intracefiles
4.1.9 Limiting The Scope Of The Trace
4.2 Performance Of Codelets
43 Energy OfCodelets
4.4 Datatrace and taskslength
45 Trace Statistics L.
46 PAPlcounters
4.7 Theoretical Lower Bound On Execution Time
4.8 Trace visualization with StarvZ
4.9 StarPU Eclipse Plugin
4.9.1 Eclipse Installation
4.9.2 StarPU Eclipse Plugin Compilation and Installation
4.9.3 StarPU Eclipse Plugin Instruction
410 Memory Feedback
4.11 Data Statistics
4.12 Tracing MPI applications

413 Verbose Traces v i i it

I Appendix

5 The GNU Free Documentation License

5.1 ADDENDUM: How to use this License for your documents

34
34
34
40
43
44
46
46
47
49
49
51
52
56
57
57
58

59

61

Generated by Doxygen

This manual documents the usage of StarPU version 1.4.2. Its contents was last updated on 2023-11-23.

Copyright © 2009-2023 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

Generated by Doxygen

Chapter 1

Organization

This part shows how to measure application performances.

« Chapter Benchmarking StarPU introduces some interesting benchmarks which can be found in StarPU
sources.

» Chapter Online Performance Tools gives information on online performance monitoring tools to help you an-
alyze your program

» Chapter Offline Performance Tools gives information on offline performance tools such as a FxT library to
trace execution data and tasks and a StarPU Eclipse Plugin to visualize data traces directly from the Eclipse
IDE.

Generated by Doxygen

Organization

Generated by Doxygen

Chapter 2

Benchmarking StarPU

Some interesting benchmarks are installed among examples in $STARPU_PATH/1ib/starpu/examples/.
Make sure to try various schedulers, for instance STARPU__SCHED=dmda.

2.1 Task Size Overhead

This benchmark gives a glimpse into how long a task should be (in ps) for StarPU overhead to be low enough
to keep efficiency. Running tasks_size_overhead. sh generates a plot of the speedup of tasks of various
sizes, depending on the number of CPUs being used.

?D - T T T T T T
linear — —
4096 —e—
2048 i
g0 L 1024 o 1
512 i
256 —e—
128 —a—
50 L 64 —a i
32 —a
16 ———
9
a 40t 4 -
=
-
QD
QO
@ 30| |
20 L .
10 .
D f - ¢ : ; i
0 10 20 30 40 50 60 70

number of cores

2.2 Data Transfer Latency

local_pingpong performs a ping-pong between the first two CUDA nodes, and prints the measured latency.

Generated by Doxygen

6 Benchmarking StarPU

2.3 Matrix-Matrix Multiplication

sgemm and dgemm perform a blocked matrix-matrix multiplication using BLAS and cuBLAS. They output the ob-
tained GFlops.

2.4 Cholesky Factorization

cholesky_x perform a Cholesky factorization (single precision). They use different dependency primitives.

2.5 LU Factorization

1u_x perform an LU factorization. They use different dependency primitives.

2.6 Simulated Benchmarks

It can also be convenient to try simulated benchmarks, if you want to give a try at CPU-GPU scheduling without
actually having a GPU at hand. This can be done by using the SimGrid version of StarPU: first install the SimGrid
simulator from https://simgrid.org/ (we tested with SimGrid from 3.11 to 3.16, and 3.18 to 3.30. SimGrid
versions 3.25 and above need to be configured with ~-Denable_msg=0N. Other versions may have compatibility
issues, 3.17 notably does not build at all. MPI simulation does not work with version 3.22). Then configure StarPU
with --enable-simgrid and rebuild and install it, and then you can simulate the performance for a few virtualized
systems shipped along StarPU: attila, mirage, idgraf, and sirocco.

For instance:

$ export STARPU_PERF_MODEL_DIR=$STARPU_PATH/share/starpu/perfmodels/sampling
$ export STARPU_HOSTNAME=attila
$ $STARPU_PATH/lib/starpu/examples/cholesky_implicit -size $((960%20)) -nblocks 20

Will show the performance of the cholesky factorization with the attila system. It will be interesting to try with different
matrix sizes and schedulers.

Performance models are available for cholesky_x*, 1u_x*, xgemm, with block sizes 320, 640, or 960 (plus 1440
for sirocco), and for stencil with block size 128x128x128, 192x192x192, and 256x256x256.

Read Chapter SimGridSupport for more information on the SimGrid support.

Generated by Doxygen

https://simgrid.org/

Chapter 3

Online Performance Tools

3.1 On-line Performance Feedback

Some examples which apply online performance monitoring are in the directory tests/perfmodels/

3.1.1 Enabling On-line Performance Monitoring

In order to enable online performance monitoring, the application can call starpu_profiling_status_set() with the pa-
rameter STARPU_PROFILING_ENABLE. It is possible to detect whether monitoring is already enabled or not
by calling starpu_profiling_status_get(). Enabling monitoring also reinitialize all previously collected feedback.
The environment variable STARPU_PROFILING can also be set to 1 to achieve the same effect. The function
starpu_profiling_init() can also be called during the execution to reinitialize performance counters and to start the
profiling if the environment variable STARPU_PROFILING is set to 1.

Likewise, performance monitoring is stopped by calling starpu_profiling_status_set() with the parameter
STARPU_PROFILING_DISABLE. Note that this does not reset the performance counters so that the applica-
tion may consult them later on.

More details about the performance monitoring API are available in Profiling.

3.1.2 Per-task Feedback

If profiling is enabled, a pointer to a structure starpu_profiling_task_info is put in the field starpu_task::profiling_info
when a task terminates. This structure is automatically destroyed when the task structure is destroyed, either
automatically or by calling starpu_task_destroy().

The structure starpu_profiling_task_info indicates the date when the task was submitted (starpu_profiling_task_info::submit_time),
started (starpu_profiling_task_info::start_time), and terminated (starpu_profiling_task_info::end_time), relative to
the initialization of StarPU with starpu_init(). User can call starpu_timing_timespec_delay_us() to calculate the time
elapsed between start time and end time in microseconds. It also specifies the identifier of the worker that has
executed the task (starpu_profiling_task_info::workerid). These dates are stored as t imespec structures which
users may convert into micro-seconds using the helper function starpu_timing_timespec_to_us(). User can call
starpu_worker_get_current_task_exp_end() to get the date when the current task is expected to be finished.

It is worth noting that the application may directly access this structure from the callback executed at the end of the
task. The structure starpu_task associated to the callback currently being executed is indeed accessible with the
function starpu_task_get_current().

3.1.3 Per-codelet Feedback

The field starpu_codelet::per_worker_stats is an array of counters. Unless the STARPU_CODELET_PROFILING
environment variable was set to 0, the i-th entry of the array is incremented every time a task implementing the
codelet is executed on the i-th worker. This array is not reinitialized when profiling is enabled or disabled. The
function starpu_codelet_display_stats() can be used to display the execution statistics of a specific codelet.

Generated by Doxygen

8 Online Performance Tools

3.1.4 Per-worker Feedback

The second argument returned by the function starpu_profiling_worker_get_info() is a structure starpu_profiling_worker_info
that gives statistics about the specified worker. This structure specifies:

* In starpu_profiling_worker_info::start_time, when StarPU started collecting profiling information for that
worker.

« In starpu_profiling_worker_info::total_time, the duration of the profiling measurement interval.

« In starpu_profiling_worker_info::executed_tasks, the number of tasks that were executed while profiling was
enabled.

It also specifies how much time was spent in various states (executing a task, executing a callback, waiting for a data
transfer to complete, etc.). Since these can happen at the same time (waiting for a data transfer while executing the
previous tasks, and scheduling the next task), we provide two views. Firstly, the "all" view:

« In starpu_profiling_worker_info::all_executing_time, the time spent executing kernels, thus real useful work.
« In starpu_profiling_worker_info::all_callback_time, the time spent executing application callbacks.
« In starpu_profiling_worker_info::all_waiting_time, the time spent waiting for data transfers.

* In starpu_profiling_worker_info::all_sleeping_time, the time spent during which there was no task to be exe-
cuted, i.e. lack of parallelism.

 In starpu_profiling_worker_info::all_scheduling_time, the time spent scheduling tasks.

But these times overlap, notably with GPUs the schedulers runs while tasks are getting executed. Another view is the
"split" view, which eliminates the overlapping, by considering for instance that it does not matter what is happening
while tasks are getting executed, that should be accounted for "executing” time, and e.g. only the scheduling periods
that happen while no task is getting executed should be accounted in "scheduling" time. More precisely:

 In starpu_profiling_worker_info::executing_time, the time spent executing kernels, normally equal to
starpu_profiling_worker_info::all_executing_time.

« In starpu_profiling_worker_info::callback_time, the time spent executing application callbacks while not exe-
cuting a task.

« In starpu_profiling_worker_info::waiting_time, the time spent waiting for data transfers while not executing a
task or a callback.

« In starpu_profiling_worker_info::sleeping_time, the time spent during which there was no task to be executed
and not executing a task or a callback or waiting for a data transfer, i.e. real lack of parallelism.

« In starpu_profiling_worker_info::scheduling_time, the time spent scheduling tasks while not executing a task
or a callback or waiting for a data transfer to finish, and there are tasks to be scheduled.

This thus provides a split of the starpu_profiling_worker_info::total_time into various states. The difference between
starpu_profiling_worker_info::total_time and the sum of this split is the remaining uncategorized overhead of the
runtime.

Calling starpu_profiling_worker_get_info() resets the profiling information associated to a worker.

To easily display all this information, the environment variable STARPU_WORKER_STATS can be set to 1 (in
addition to setting STARPU_PROFILING to 1). A summary will then be displayed at program termination. To display
the summary in a file instead of the standard error stream, use the environment variable STARPU_WORKER_+«
STATS_FILE.

Worker stats:

CUDA 0.0 (Tesla M2075 4.7 GiB 03:00.0)
133 task(s)
time split: total 3212.86 ms = executing: 1588.56 ms + callback: 2.95 ms + waiting: 5.34 ms + sleepinc
all time: executing: 1588.56 ms callback: 2.95 ms waiting: 22.83 ms sleeping: 1725.93 ms scheduling: 1
286.388333 GFlop/s

CPU 0
10 task (s)

Generated by Doxygen

3.1 On-line Performance Feedback 9

time split: total 3212.89 ms = executing: 2117.19 ms + callback: 0.23 ms + waiting:
all time: executing: 2117.19 ms callback: 0.23 ms waiting: 0.0l ms sleeping:
22.029695 GFlop/s

CPU 1
10 task(s)
time split: total 3212.92 ms = executing: 2116.18 ms + callback: 0.17 ms + waiting:
all time: executing: 2116.18 ms callback: 0.17 ms waiting: 0.0l ms sleeping:
22.029487 GFlop/s

CPU 2
10 task (s)
time split: total 3212.94 ms = executing: 2116.08 ms + callback: 0.18 ms + waiting:
all time: executing: 2116.08 ms callback: 0.18 ms waiting: 0.0l ms sleeping:
22.029343 GFlop/s

Global time split: total 12851.60 ms = executing: 7938.01 ms (61.77%) + callback: 3.53 ms (0.03%)

The number of GFlops/s is available because the starpu_task::flops field of the tasks were filled (or STARPU_FLOPS
used in starpu_task_insert()).

When an FxT trace is generated (see Generating Traces With FxT), it is also possible to use the tool starpu_«
workers_activity (see Monitoring Activity) to generate a graphic showing the evolution of these values during
the time, for the different workers.

3.1.5 Bus-related Feedback

The bus speed measured by StarPU can be displayed by using the tool starpu_machine_display, for
instance:

StarPU has found:
3 CUDA devices

CUDA 0 (Tesla C2050 02:00.0)

CUDA 1 (Tesla C2050 03:00.0)

CUDA 2 (Tesla C2050 84:00.0)
from to RAM to CUDA O to CUDA 1 to CUDA 2
RAM 0.000000 5176.530428 5176.492994 5191.710722
CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
CUDA 2 4534.229519 2417.069025 2417.060863 0.000000

Statistics about the data transfers which were performed and temporal average of bandwidth usage can be obtained
by setting the environment variable STARPU_BUS_STATS to 1; a summary will then be displayed at program
termination. To display the summary in a file instead of the standard error stream, use the environment variable
STARPU_BUS_STATS_FILE.

Data transfer stats:

RAM 0 -> CUDA 0 319.92 MB 213.10 MB/s (transfers 91 - avg 3.52 MB)
CUDA 0 -> RAM 0 214.45 MB 142.85 MB/s (transfers 61 - avg 3.52 MB)
RAM 0 -> CUDA 1 302.34 MB 201.39 MB/s (transfers 86 — avg 3.52 MB)
CUDA 1 -> RAM 0 133.59 MB 88.99 MB/s (transfers : 38 - avg 3.52 MB)
CUDA 0 -> CUDA 1 144.14 MB 96.01 MB/s (transfers 41 - avg 3.52 MB)
CUDA 1 —-> CUDA O 130.08 MB 86.64 MB/s (transfers : 37 - avg 3.52 MB)
RAM 0 -> CUDA 2 312.89 MB 208.42 MB/s (transfers 89 - avg 3.52 MB)
CUDA 2 -> RAM 0 133.59 MB 88.99 MB/s (transfers 38 - avg 3.52 MB)
CUDA 0 -> CUDA 2 151.17 MB 100.69 MB/s (transfers : 43 - avg 3.52 MB)
CUDA 2 -> CUDA 0 105.47 MB 70.25 MB/s (transfers 30 - avg 3.52 MB)
CUDA 1 -> CUDA 2 175.78 MB 117.09 MB/s (transfers 50 - avg 3.52 MB)
CUDA 2 -> CUDA 1 203.91 MB 135.82 MB/s (transfers 58 - avg 3.52 MB)
Total transfers: 2.27 GB

3.1.6 MPI-related Feedback

Statistics about the data transfers which were performed over MPI can be obtained by setting the environment
variable STARPU_MPI_STATS to 1; a summary will then be displayed at program termination:

[starpu_comm_stats] [1] T
[starpu_comm_stats] [1:0]

OTAL: 456.

456.

000000 B
000000 B

0.000435 MB
0.000435 MB

0.000188
0.000188

B/s
B/s

0.000000 MB/s
0.000000 MB/s

Generated by Doxygen

1096.21 ms scheduling:

+ waiting:

0.01 ms + sleepinc

1095.06 ms scheduling: 2¢

0.01 ms + sleepinc

1096.10 ms scheduling: 2¢

0.01 ms + sleepinc
2¢

c

10 Online Performance Tools

[starpu_comm_stats] [0] TOTAL: 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s
[starpu_comm_stats] [0:1] 456.000000 B 0.000435 MB 0.000188 B/s 0.000000 MB/s

These statistics can be plotted as heatmaps using StarPU tool starpu_mpi_comm_matrix.py (see MPIDe-
bug).

3.2 Task And Worker Profiling

A full example showing how to use the profiling APl is available in the StarPU sources in the directory
examples/profiling/.

struct starpu_task xtask = starpu_task_create();

task->cl = &cl;

task->synchronous = 1;

/* We will destroy the task structure by hand so that we can

*+ query the profiling info before the task is destroyed. =/

task->destroy = 0;

/* Submit and wait for completion (since synchronous was set to 1) x/
starpu_task_submit (task);

/+ The task is finished, get profiling information */

struct starpu_profiling_task_info xinfo = task->profiling_info;

/% How much time did it take before the task started ? x/

double delay += starpu_timing timespec_delay_us (&info->submit_time, &info->start_time);
/* How long was the task execution ? x/

double length += starpu_timing_timespec_delay_us (&info->start_time, &info->end_time);
/+ We no longer need the task structure x/

starpu_task_destroy (task);

/+ Display the occupancy of all workers during the test =/

int worker;

for (worker = 0; worker < starpu_worker_get_count (); worker++)

{

struct starpu_profiling worker_info worker_info;

int ret = starpu_profiling _worker_get_info (worker, &worker_info);

STARPU_ASSERT (!ret);

double total_time = starpu_timing_timespec_to_us (&worker_info.total_time);

double executing_time = starpu_timing_timespec_to_us (&worker_info.executing_time) ;
double sleeping_time = starpu_timing_timespec_to_us (&worker_info.sleeping_time);
double overhead_time = total_time - executing_time - sleeping time;

float executing_ratio = 100.0xexecuting_time/total_time;

float sleeping_ratio = 100.0xsleeping_time/total_time;

float overhead_ratio = 100.0 - executing_ratio - sleeping_ratio;

char workername[128];
starpu_worker_get_name (worker, workername, 128);
fprintf (stderr, "Worker %s:\n", workername) ;

fprintf (stderr, "\ttotal time: %.21f ms\n", total_timexle-3);

fprintf (stderr, "\texec time: %.21f ms (%.2f %%)\n", executing_timexle-3, executing_ratio);
fprintf (stderr, "\tblocked time: %.21f ms (%.2f %%)\n", sleeping_timexle-3, sleeping_ratio);
fprintf (stderr, "\toverhead time: %.21f ms (%.2f %%)\n", overhead_timexle-3, overhead_ratio);

3.3 Performance Model Example

To achieve good scheduling, StarPU scheduling policies need to be able to estimate in advance the duration of a
task. This is done by giving to codelets a performance model, by defining a structure starpu_perfmodel and provid-
ing its address in the field starpu_codelet::model. The fields starpu_perfmodel::symbol and starpu_perfmodel::type
are mandatory, to give a name to the model, and the type of the model, since there are several kinds of perfor-
mance models. Then starpu_task_get_model_name() can be called to retrieve the name of the performance model
associated with a task. For compatibility, make sure to initialize the whole structure to zero, either by using explicit
memset(), or by letting the compiler implicitly do it as examplified below.

* Measured at runtime (model type STARPU_HISTORY_BASED). This assumes that for a given set of
data input/output sizes, the performance will always be about the same. This is very true for regular ker-
nels on GPUs for instance (<0.1% error), and just a bit less true on CPUs (~=1% error). This also as-
sumes that there are few different sets of data input/output sizes. StarPU will then keep record of the
average time of previous executions on the various processing units, and use it as an estimation. His-
tory is done per task size, by using a hash of the input and output sizes as an index. It will also save
it in SSTARPU_HOME/ . starpu/sampling/codelets for further executions, and can be observed
by using the tool starpu_perfmodel_display, or drawn by using the tool starpu_perfmodel+«
_plot (PerformanceModelCalibration). The models are indexed by machine name. To share the mod-
els between machines (e.g. for a homogeneous cluster), use export STARPU_HOSTNAME=some+«
_global_name. Measurements are only done when using a task scheduler which makes use of it,

Generated by Doxygen

3.3 Performance Model Example 11

such as dmda. Measurements can also be provided explicitly by the application, by using the function
starpu_perfmodel_update_history(). An example is in the file tests/perfmodels/feed.c.

The following is a small code example.

If e.g. the code is recompiled with other compilation options, or several variants of the code are used, the
symbol string should be changed to reflect that, in order to recalibrate a new model from zero. The symbol
string can even be constructed dynamically at execution time, as long as this is done before submitting any
task using it.

static struct starpu_perfmodel mult_perf model =
{
.type = STARPU_HISTORY_BASED,
.symbol = "mult_perf_model"
}i
struct starpu_codelet cl =

{

.cpu_funcs = { cpu_mult },

.cpu_funcs_name = { "cpu_mult" 1},
.nbuffers = 3,

.modes = { STARPU_R, STARPU_R, STARPU_W },

/+ for the scheduling policy to be able to use performance models =/
.model = &mult_perf model
i

* Measured at runtime and refined by regression (model types STARPU_REGRESSION_BASED and
STARPU_NL_REGRESSION_BASED). This still assumes performance regularity, but works with various
data input sizes, by applying regression over observed execution times. STARPU_REGRESSION_BASED
uses an axn”b regression form, STARPU NL REGRESSION BASED uses an a*n”b+c (more precise
than STARPU_REGRESSION_BASED, but costs a lot more to compute).

For instance, tests/perfmodels/regression_based.c uses a regression-based performance
model for the function memset ().

Of course, the application has to issue tasks with varying size so that the regression can be computed.
StarPU will not trust the regression unless there is at least 10% difference between the minimum and max-
imum observed input size. It can be useful to set the environment variable STARPU_CALIBRATE to 1 and
run the application on varying input sizes with STARPU_SCHED set to dmda scheduler, to feed the per-
formance model for a variety of inputs. The application can also provide the measurements explicitly by
using the function starpu_perfmodel_update_history(). The tools starpu_perfmodel_display and
starpu_perfmodel_plot can be used to observe how much the performance model is calibrated
(PerformanceModelCalibration); when their output looks good, STARPU_CALIBRATE can be reset to 0 to
let StarPU use the resulting performance model without recording new measures, and STARPU_SCHED can
be set to dmda to benefit from the performance models. If the data input sizes vary a lot, it is really important
to set STARPU_CALIBRATE to 0, otherwise StarPU will continue adding the measures, and result with a very
big performance model, which will take time a lot of time to load and save.

For non-linear regression, since computing it is quite expensive, it is only done at termination of the applica-
tion. This means that the first execution of the application will use only history-based performance model to
perform scheduling, without using regression.

+ Another type of model is STARPU_MULTIPLE_REGRESSION_BASED, which is based on multiple linear
regression. In this model, users define both the relevant parameters and the equation for computing the task
duration.

Trernel = @+ b(M® % NP s K7) 4 (M2 « NP2« K72) 4 ...

M, N, K are the parameters of the task, added at the task creation. These need to be extracted by the
cl_perf_func function, which should be defined by users. «, 3,y are the exponents defined by users in
model->combinations table. Finally, coefficients a, b, c are computed automatically by the StarPU at
the end of the execution, using least squares method of the dge1s_ LAPACK function.

examples/mlr/mlr.c example provides more details on the usage of STARPU_MULTIPLE_REGRESSION_BASED
models. The --enable-mlr configure option needs to be set to calibrate the model.

Coefficients computation is done at the end of the execution, and the results are stored in standard codelet
perfmodel files. Additional files containing the duration of tasks together with the value of each parameter are
stored in .starpu/sampling/codelets/tmp/ directory. These files are reused when STARPU_«
CALIBRATE environment variable is set to 1, to recompute coefficients based on the current, but also on

Generated by Doxygen

12 Online Performance Tools

the previous executions. By default, StarPU uses a lightweight dgels implementation, but the --enable-mlr-
system-blas configure option can be used to make StarPU use a system-provided dgels BLAS.

Additionally, when multiple linear regression models are not enabled through --enable-mir or when the
model->combinations are notdefined, StarPU will still write output filesinto . starpu/sampling/codelets/tmp;/
to allow performing an analysis. This analysis typically aims at finding the most appropriate equation for the
codelet and tools/starpu_mlr_analysis script provides an example of how to perform such study.

* Provided as an estimation from the application itself (model type STARPU_COMMON and field
starpu_perfmodel::.cost_function), see for instance examples/common/blas_model.h and
examples/common/blas_model.c

» Provided explicitly by the application (model type STARPU_PER_ARCH): either field starpu_perfmodel::arch_cost_function,
orthefields .per_arch[arch] [nimpl].cost_function have to be filled with pointers to functions
which return the expected duration of the task in micro-seconds, one per architecture, see for instance
tests/datawizard/locality.c

» Provided explicity by the application (model type STARPU_PER_WORKER) similarly with the
starpu_perfmodel::worker_cost_function field.

For STARPU_HISTORY_BASED, STARPU_REGRESSION_BASED, and STARPU_NL_REGRESSION_BASED,
the dimensions of task data (both input and output) are used as an index by default. STARPU_HISTORY_BASED
uses a CRC hash of the dimensions as an index to distinguish histories, and STARPU_REGRESSION_BASED
and STARPU_NL_REGRESSION_BASED use the total size as an index for the regression. (Data marked with
STARPU_NOFOQOTPRINT are not taken into account).

The starpu_perfmodel::size_base and starpu_perfmodel::footprint fields however permit the application to override
that, when for instance some of the data do not matter for task cost (e.g. mere reference table), or when using sparse
structures (in which case it is the number of non-zeros which matter), or when there is some hidden parameter
such as the number of iterations, or when the application actually has a very good idea of the complexity of the
algorithm, and just not the speed of the processor, etc. The example in the directory examples/pi uses this to
include the number of iterations in the base size. starpu_perfmodel::size_base should be used when the variance
of the actual performance is known (i.e. bigger return value is longer execution time), and thus particularly useful
for STARPU_REGRESSION_BASED or STARPU_NL_REGRESSION_BASED. starpu_perfmodel::footprint can be
used when the variance of the actual performance is unknown (irregular performance behavior, etc.), and thus only
useful for STARPU_HISTORY_BASED. starpu_task_data_footprint() can be used as a base and combined with
other parameters through starpu_hash_crc32c¢_be() for instance.

StarPU will automatically determine when the performance model is calibrated, or rather, it will assume the perfor-
mance model is calibrated until the application submits a task for which the performance can not be predicted. For
STARPU_HISTORY_BASED, StarPU will require 10 (STARPU_CALIBRATE_MINIMUM) measurements for a given
size before estimating that an average can be taken as estimation for further executions with the same size. For
STARPU_REGRESSION_BASED and STARPU_NL_REGRESSION_BASED, StarPU will require 10 (STARPU+«
_CALIBRATE_MINIMUM) measurements, and that the minimum measured data size is smaller than 90% of the
maximum measured data size (i.e. the measurement interval is large enough for a regression to have a meaning).
Calibration can also be forced by setting the STARPU_CALIBRATE environment variable to 1, or even reset by
setting it to 2.

How to use schedulers which can benefit from such performance model is explained in TaskSchedulingPolicy.

The same can be done for task energy consumption estimation, by setting the field starpu_codelet::energy_model
the same way as the field starpu_codelet::model. Note: for now, the application has to give to the energy consump-
tion performance model a name which is different from the execution time performance model.

The application can request time estimations from the StarPU performance models by filling a task structure as
usual without actually submitting it. The data handles can be created by calling any of the functions starpu_x*_«
data_register with a NULL pointer and —1 node and the desired data sizes, and need to be unregistered as
usual. The functions starpu_task_expected_length() and starpu_task_expected_energy() can then be called to get
an estimation of the task cost on a given arch. starpu_task_footprint() can also be used to get the footprint used for
indexing history-based performance models. starpu_task_destroy() needs to be called to destroy the dummy task
afterwards. See tests/perfmodels/regression_based. c for an example.

The application can also request an on-the-fly XML report of the performance model, by calling starpu_perfmodel_dump_xml()
to print the report to a FILEx*.

Generated by Doxygen

3.4 Performance Monitoring Counters 13

3.4 Performance Monitoring Counters

This section presents the StarPU performance monitoring framework. It summarizes the objectives of the frame-
work. It then introduces the entities involved in the framework. It presents the API of the framework, as well as
some implementation details. It exposes the typical sequence of operations to plug an external tool to monitor a
performance counter of StarPU.

3.4.1 Objectives

The objectives of this framework are to let external tools interface with StarPU to collect various performance metrics
at runtime, in a generic, safe, extensible way. For that, it enables such tools to discover the available performance
metrics in a particular StarPU build, as well as the type of each performance counter value. It lets these tools build
sets of performance counters to monitor, and then register listener callbacks to collect the measurement samples
of these sets of performance counters at runtime.

3.4.2 Entities

The performance monitoring framework is built on a series of concepts and items, organized consistently. The
corresponding C language objects should be considered opaque by external tools, and should only be manipulated
through proper function calls and accessors.

3.4.2.1 Performance Counter

The performance counter entity is the fundamental object of the framework, representing one piece of performance
metrics, such as for instance the total number of tasks submitted so far, that is exported by StarPU and can be col-
lected through the framework at runtime. A performance counter has a type and belongs to a scope. A performance
counter is designated by a unique name and unique ID integer. We can start or stop collecting performance counter
values by using starpu_perf_counter_collection_start() and starpu_perf_counter_collection_stop().

3.4.2.2 Performance Counter Type

A performance counter has a type. A type is designated by a unique name and unique ID number. Currently,
supported types include:

Type Name Type Definition

"int32" 32-bit signed integers

"int64" 64-bit signed integers

"float" 32-bit single-precision floating point
"double” 64-bit double-precision floating point

3.4.2.3 Performance Counter Scope

A performance counter belongs to a scope. The scope of a counter defines the context considered for computing the
corresponding performance counter. A scope is designated with a uniqgue name and unique ID number. Currently,
defined scopes include:

Scope Name Scope Definition

"global" Counter is global to the StarPU instance
"per_worker" Counter is within the scope of a thread worker
"per_codelet" | Counter is within the scope of a task codelet

3.4.2.4 Performance Counter Set

A performance counter set is a subset of the performance counters belonging to the same scope. Each counter of
the scope can be in the enabled or disabled state in a performance counter set. A performance counter set enables
a performance monitoring tool to indicate the set of counters to be collected for a particular listener callback.

Generated by Doxygen

14 Online Performance Tools

3.4.2.5 Performance Counter Sample

A performance counter sample corresponds to one sample of collected measurement values of a performance
counter set. Only the values corresponding to enabled counters in the sample's counter set should be observed by
the listener callback. Whether the sample contains valid values for counters disabled in the set is unspecified.

3.4.2.6 Performance Counter Listener

A performance counter listener is a callback function registered by some external tool to monitor a set of perfor-
mance counters in a particular scope. It is called each time a new performance counter sample is ready to be
observed. The sample object should not be accessed outside the callback.

3.4.2.7 Application Programming Interface

The API of the performance monitoring framework is defined in the starpu_perf_monitoring.h public header file
of StarPU. This header file is automatically included with starpu.h. An example of use of the routines is given in
Sequence of operations.

3.4.3 Implementation Details
3.4.3.1 Performance Counter Registration

Each module of StarPU can export performance counters. In order to do so, modules that need to export some
counters define a registration function that is called at StarPU initialization time. This function is responsible for
calling the "_starpu_perf_counter_register()" function once for each counter it exports, to let the framework know
about the list of counters managed by the module. It also registers performance sample updater callbacks for the
module, one for each scope for which it exports counters.

3.4.3.2 Performance Sample Updaters

The updater callback for a module and scope combination is internally called every time a sample for a set of
performance counter must be updated. Thus, the updated callback is responsible for filling the sample's selected
counters with the counter values found at the time of the call. Global updaters are currently called at task submission
time, as well as any blocking tasks management function of the StarPU API, such as starpu_task_wait_for_all(),
which waits for the completion of all tasks submitted up to this point. Per-worker updaters are currently called at
the level of StarPU's drivers, that is, the modules in charge of task execution of hardware-specific worker threads.
The actual calls occur in-between the execution of tasks. Per-codelet updaters are currently called both at task
submission time, and at the level of StarPU's drivers together with the per-worker updaters.

A performance sample object is locked during the sample collection. The locking prevents the following issues:

» The listener of sample being changed during sample collection;
» The set of counters enabled for a sample being changed;
« Conflicting concurrent updates;

» Updates while the sample is being read by the listener.

The location of the updaters' calls is chosen to minimize the sequentialization effect of the locking, in order to limit the
level of interference of the monitoring process. For Global updaters, the calls are performed only on the application
thread(s) in charge of submitting tasks. Since, in most cases, only a single application thread submits tasks, the
sequentialization effect is moderate. Per-worker updates are local to their worker, thus here again the sample lock
is un-contented, unless the external monitoring tool frequently changes the set of enabled counters in the sample.

3.4.3.3 Counter operations

In practice, the sample updaters only take snapshots of the actual performance counters. The performance coun-
ters themselves are updated with ad-hoc procedures depending on each counter. Such procedures typically involve
atomic operations. While operations such as atomic increments or decrements on integer values are readily avail-
able, this is not the case for more complex operations such as min/max for computing peak value counters (for
instance in the global and per-codelet counters for peak number of submitted tasks and peak number of ready

Generated by Doxygen

3.4 Performance Monitoring Counters 15

tasks waiting for execution), and this is also not the case for computations on floating point data (used for instance
in computing cumulated execution time of tasks, either per worker or per codelet). The performance monitoring
framework therefore supplies such missing routines, for the internal use of StarPU.

3.4.3.4 Runtime checks

The performance monitoring framework features a comprehensive set of runtime checks to verify that both Star«
PU and some external tool do not access a performance counter with the wrong typed routines, to quickly detect
situations of mismatch that can result from the evolution of multiple pieces of software at distinct paces. Moreover,
no StarPU data structure is accessed directly, either by the external code making use of the performance monitoring
framework. The use of the C enum constants is optional; referring to values through constant strings is available
when more robustness is desired. These runtime checks enable the framework to be extensible. Moreover, while
the framework's counters currently are permanently compiled in, they could be made optional at compile time,
for instance to suppress any overhead once the analysis and optimization process has been completed by the
programmer. Thanks to the runtime discovery of available counters, the applicative code, or an intermediate layer
such as skeleton layer acting on its behalf, would then be able to adapt to performance analysis builds versus
optimized builds.

3.4.4 Exported Counters
3.4.4.1 Global Scope

Counter Name Counter Definition
starpu.task.g_total_submitted | Total number of tasks submitted

starpu.task.g_peak_submitted Maximum number of tasks submitted, waiting for dependencies
resolution at any time

starpu.task.g_peak_ready Maximum number of tasks ready for execution, waiting for an ex-
ecution slot at any time

3.4.4.2 Per-worker Scope

Counter Name Counter Definition
starpu.task.w_total_executed Total number of tasks executed on a given worker
starpu.task.w_cumul_execution_time | Cumulated execution time of tasks executed on a given

worker
3.4.4.3 Per-Codelet Scope

Counter Name Counter Definition
starpu.task.c_total_submitted Total number of submitted tasks for a given codelet
starpu.task.c_peak_submitted Maximum number of submitted tasks for a given

codelet waiting for dependencies resolution at any time

starpu.task.c_peak_ready Maximum number of ready tasks for a given codelet
waiting for an execution slot at any time

starpu.task.c_total_executed Total number of executed tasks for a given codelet

starpu.task.c_cumul_execution_time | Cumulated execution time of tasks for a given codelet

3.4.5 Sequence of operations

This section presents a typical sequence of operations to interface an external tool with some StarPU per-
formance counters. In this example, the counters monitored are the per-worker total number of executed
tasks (starpu.task.w_total_executed) and the tasks' cumulated execution time (starpu.task.+«
w_cumul_execution_time).

Step 0: Initialize StarPU

Generated by Doxygen

16 Online Performance Tools

StarPU must first be initialized, by a call to starpu_init(), for performance counters to become available, since each

module of StarPU registers the performance counters it exports during that initialization phase.
int ret = starpu_init (NULL);

Step 1: Allocate a counter set
A counter set has to be allocated on the per-worker scope. The per-worker scope id can be obtained by name, or
with the pre-defined enum value starpu_perf_counter_scope_per_worker.

enum starpu_perf_counter_scope w_scope = starpu_perf_counter_scope_per_worker;
struct starpu_perf_counter_set xw_set = starpu_perf counter_set_alloc(w_scope);

Step 2: Get the counter IDs Each performance counter has a unique ID used to refer to it in subsequent calls to
the performance monitoring framework.

int id_w_total_executed = starpu_perf_counter_name_to_id(w_scope,
"starpu.task.w_total_executed");
int id_w_cumul_execution_time = starpu_perf_ counter_name_to_id(w_scope,

"starpu.task.w_cumul_execution_time");
Step 3: Enable the counters in the counter set
This step indicates which counters will be collected into performance monitoring samples for the listeners referring
to this counter set.

starpu_perf_counter_set_enable_id(w_set, id_w_total_executed);
starpu_perf_counter_set_enable_id(w_set, id_w_cumul_execution_time);

Step 4: Write a listener callback
This callback will be triggered when a sample becomes available. Upon execution, it reads the values for the two
counters from the sample and displays these values, for the sake of the example.

void w_listener_cb(struct starpu_perf counter_listener xlistener,
struct starpu_perf_counter_sample *sample,
void *context)
{
int32_t w_total_executed =
starpu_perf_counter_sample_get_int32_value (sample, id_w_total_executed);
double w_cumul_execution_time =
starpu_perf_counter_sample_get_double_value (sample, id_w_cumul_execution_time);
printf ("worker[%d]: w_total_executed = %d, w_cumul_execution_time = %lf\n",
starpu_worker_get_id(),
w_total_executed,
w_cumul_execution_time);

}

Step 5: Initialize the listener

This step allocates the listener structure and prepares it to listen to the selected set of per-worker counters. However,
it is not actually active until Step 6, once it is attached to one or more worker.

struct starpu_perf_counter_listener x w_listener =
starpu_perf_counter_listener_init (w_set, w_listener_cb, NULL);

Step 6: Set the listener on all workers This step actually makes the listener active, in this case on every StarPU
worker thread.

starpu_perf_counter_set_all_ per_ worker_listeners(w_listener);
After this step, any task assigned to a worker will be counted in that worker selected performance counters, and
reported to the listener.

3.5 Performance Steering Knobs

This section presents the StarPU performance steering framework. It summarizes the objectives of the framework.
It introduces the entities involved in the framework, and then details the API, implementation and sequence of
operations.

3.5.1 Objectives

The objectives of this framework are to let external tools interface with StarPU, observe, and act at runtime on
actionable performance steering knobs exported by StarPU, in a generic, safe, extensible way. It defines an API to
let such external tools discover the available performance steering knobs in a particular StarPU revision of build, as
well as the type of each knob.

3.5.2 Entities

3.5.2.1 Performance Steering Knob

The performance steering knob entity designates one runtime-actionable knob exported by StarPU. It may represent
some setting, or some constant used within StarPU for a given purpose. The value of the knob is typed, it can be

Generated by Doxygen

3.5 Performance Steering Knobs 17

obtained or modified with the appropriate getter/setter routine. The knob belongs to a scope. A performance
steering knob is designated with a unique name and unique ID number.
3.5.2.2 Knob Type

A performance steering knob has a type. A type is designated by a unique name and unique ID number. Currently,
supported types include:

Type Name Type Definition

"int32" 32-bit signed integers

"int64" 64-bit signed integers

"float" 32-bit single precision floating point
"double” 64-bit double precision floating point

On/Off knobs are defined as "int32" type, with value 0 for Off and value !0 for On, unless otherwise specified.

3.5.2.3 Knob Scope

A performance steering knob belongs to a scope. The scope of a knob defines the context considered for computing
the corresponding knob. A scope is designated with a unique name and unique ID number. Currently, defined
scopes include:

Scope Name Scope Definition
"global" Knob is global to the StarPU instance
"per_worker" Knob is within the scope of a thread worker
"per_scheduler" | Knob is within the scope of a scheduling policy instance

3.5.2.4 Knob Group

The notion of Performance Steering Knob Group is currently internal to StarPU. It defines a series of knobs that are
handled by the same couple of setter/getter functions internally. A knob group belongs to a knob scope.

3.5.3 Application Programming Interface

The API is defined in the starpu_perf_steering.h public header file of StarPU. This header file is automatically
included with starpu.h.

3.5.4 Implementation Details

While the APIs of the monitoring and the steering frameworks share a similar design philosophy, the internals are
significantly different. Since the effect of the steering knobs varies widely, there is no global locking scheme in place
shared for all knobs. Instead, each knob gets its own procedures to get the value of a setting, or change it. To
prevent code duplication, some related knobs may share getter/setter routines as knob groups.

The steering framework does not involve callback routines. Knob get operations proceed immediately, except for
the possible delay in getting access to the knob value. Knob set operations also proceed immediately, not counting
the exclusive access time, though their action result may be observed with some latency, depending on the knob
and on the current workload. For instance, acting on a per-worker starpu.worker.w_enable_worker«
_knob to disable a worker thread may be observed only after the corresponding worker's assigned task queue
becomes empty, since its actual effect is to prevent additional tasks to be queued to the worker, and not to migrate
already queued tasks to another worker. Such design choices aim at providing a compromise between offering
some steering capabilities and keeping the cost of supporting such steering capabilities to an acceptable level.
The framework is designed to be easily extensible. At StarPU initialization time, the framework calls initialization
functions if StarPU modules to initialize the set of knobs they export. Knob get/set accessors can be shared among
multiple knobs in a knob group. Thus, exporting a new knob is basically a matter of declaring it at initialization
time, by specifying its name and value type, and either add its handling to an existing getter/setter pair of accessors
in a knob group, or create a new group. As the performance monitoring framework, the performance steering

Generated by Doxygen

18 Online Performance Tools

framework is currently permanently enabled, but could be made optional at compile-time to separate testing builds
from production builds.

3.5.5 Exported Steering Knobs
3.5.5.1 Global Scope

Knob Name Knob Definition
starpu.global.g_calibrate_knob Enable/disable the calibration of performance models
starpu.global.g_enable_catch_« Enable/disable the catching of UNIX signals
signal_knob

3.5.5.2 Per-worker Scope

Knob Name Knob Definition
starpu.worker.w_bind_to_pu_knob Change the processing unit to which a worker thread
is bound
starpu.worker.w_enable_worker_knob | Disable/re-enable a worker thread to be selected for
task execution

3.5.5.3 Per-Scheduler Scope

Knob Name Knob Definition
starpu.task.s_max_priority_cap_knob | Setacapping maximum priority value for subsequently
submitted tasks
starpu.task.s_min_priority_cap_knob | Seta capping minimum priority value for subsequently
submitted tasks

starpu.dmda.s_alpha_knob Scaling factor for the Alpha constant for Deque Model
schedulers to alter the weight of the estimated task ex-
ecution time

starpu.dmda.s_beta_knob Scaling factor for the Beta constant for Deque Model

schedulers to alter the weight of the estimated data
transfer time for the task's input(s)

starpu.dmda.s_gamma_knob Scaling factor for the Gamma constant for Deque
Model schedulers to alter the weight of the estimated
power consumption of the task

starpu.dmda.s_idle_power_knob Scaling factor for the baseline Idle power consumption
estimation of the corresponding processing unit

3.5.6 Sequence of operations

This section presents an example of a sequence of operations representing a typical use of the performance steering
knobs exported by StarPU. In this example, a worker thread is temporarily barred from executing tasks. For that,
the corresponding starpu.worker.w_enable_worker_knob of the worker, initially set to 1 (= enabled) is
changed to 0 (= disabled).
Step 0: Initialize StarPU
StarPU must first be initialized, by a call to starpu_init(). Performance steering knobs only become available after

this step, since each module of StarPU registers the knobs it exports during that initialization phase.
int ret = starpu_init (NULL);

Step 1: Get the knob ID
Each performance steering knob has a unique ID used to refer to it in subsequent calls to the performance steering
framework. The knob belongs to the "per_worker" scope.

int w_scope = starpu_perf_knob_scope_name_to_id("per_worker");
int w_enable_id = starpu_perf_knob_name_to_id(w_scope, "starpu.worker.w_enable_worker_knob");

Step 2: Get the knob current value
This knob is an On/Off knob. Its value type is therefore a 32-bit integer, with value 0 for Off and value !0 for On. The

Generated by Doxygen

3.5 Performance Steering Knobs 19

getter functions for per-worker knobs expect the knob ID as first argument, and the worker ID as second argument.
Here the getter call obtains the value of worker 5.

int32_t val = starpu_perf_knob_get_per_worker_int32_value (w_enable_id, 5);

Step 3: Set the knob current value

The setter functions for per-worker knobs expect the knob ID as first argument, the worker ID as second argument,
and the new value as third argument. Here, the value for worker 5 is set to 0 to temporarily bar the worker thread
from accepting new tasks for execution.

starpu_perf_knob_set_per_worker_int32_value (w_enable_id, 5, 0);

Subsequently, setting the value of the knob back to 1 enables the corresponding to accept new tasks for execution
again.

starpu_perf_knob_set_per_worker_int32_value (w_enable_id, 5, 1);

Generated by Doxygen

20

Online Performance Tools

Generated by Doxygen

Chapter 4

Offline Performance Tools

To get an idea of what is happening, a lot of performance feedback is available, detailed in this chapter. The various
information should be checked for.

» What does the Gantt diagram look like? (see Creating a Gantt Diagram)

— If it's mostly green (tasks running in the initial context) or context specific color prevailing, then the
machine is properly utilized, and perhaps the codelets are just slow. Check their performance, see
Performance Of Codelets.

— If it's mostly purple (Fetchinglnput), tasks keep waiting for data transfers, do you perhaps have far more
communication than computation? Did you properly use CUDA streams to make sure communication
can be overlapped? Did you use data-locality aware schedulers to avoid transfers as much as possible?

— If it's mostly red (Blocked), tasks keep waiting for dependencies, do you have enough parallelism? It
might be a good idea to check what the DAG looks like (see Creating a DAG With Graphviz).

— If only some workers are completely red (Blocked), for some reason the scheduler didn't assign tasks
to them. Perhaps the performance model is bogus, check it (see Performance Of Codelets). Do all your
codelets have a performance model? When some of them don't, the schedulers switches to a greedy
algorithm which thus performs badly.

You can also use the Temanejo task debugger (see UsingTheTemanejoTaskDebugger) to visualize the task graph
more easily.

4.1 Generating Traces With FxT

StarPU can use the FxT library (see https://savannah.nongnu.org/projects/fkt/) to generate
traces with a limited runtime overhead.

You can get a tarball from http://download.savannah.gnu.org/releases/fkt/?C=M

Compiling and installing the FxT library in the SFXTDIR path is done following the standard procedure:

$./configure --prefix=$FXTDIR

$ make
$ make install

In order to have StarPU to generate traces, StarPU needs to be configured again after installing FxT, and configu-
ration show:

FxT trace enabled: yes

If configure does not find FxT automatically, it can be specified by hand with the option --with-fxt :

$./configure —--with-fxt=$FXTDIR

Or you can simply point the PKG_CONF IG_PATH environment variable to SFXTDIR/1ib/pkgconfig

When STARPU_FXT_TRACE is set to 1, a trace is generated when StarPU is terminated by calling
starpu_shutdown(). The trace is a binary file whose name has the form prof_file_XXX_YYY where XXX
is the username, and YYY is the MPI id of the process that used StarPU (or 0 when running a sequential program).

Generated by Doxygen

https://savannah.nongnu.org/projects/fkt/
http://download.savannah.gnu.org/releases/fkt/?C=M

22 Offline Performance Tools

One can change the name of the file by setting the environment variable STARPU_FXT_SUFFIX, its contents will
be used instead of prof_file_ XXX. This file is saved in the /tmp/ directory by default, or by the directory
specified by the environment variable STARPU_FXT_PREFIX.

The additional configure option --enable-fxt-lock can be used to generate trace events which describes the
lock's behavior during the execution. It is however very heavy and should not be used unless debugging StarPU's
internal locking.

When the FxT trace file prof_file_something has been generated, it is possible to generate different trace
formats by calling:

$ starpu_fxt_tool -i /tmp/prof_file_something

Or alternatively, setting the environment variable STARPU_GENERATE_TRACE to 1 before application execution
will make StarPU automatically generate all traces at application shutdown. Note that if the environment variable
STARPU_FXT_PREFIX is set, files will be generated in the given directory.

One can also set the environment variable STARPU_GENERATE_TRACE_OPTIONS to specify options, see
starpu_fxt_tool -help, for example:

$ export STARPU_GENERATE_TRACE=1
$ export STARPU_GENERATE_TRACE_OPTIONS="-no-acquire"

When running an MPI application, STARPU_GENERATE_TRACE will not work as expected (each node will try to
generate trace files, thus mixing outputs...), you have to collect the trace files from the MPI nodes, and specify them
all on the command starpu_fxt_tool, forinstance:

$ starpu_fxt_tool -i /tmp/prof_file_somethingx
By default, the generated trace contains all information. To reduce the trace size, various —no—-foo options can be

passed to starpu_fxt_tool, see starpu_fxt_tool -help.

4.1.1 Creating a Gantt Diagram

One of the generated files is a trace in the Paje format. The file, located in the current directory, is named pa je . «
trace. It can be viewed with VIiTE (https://solverstack.gitlabpages.inria.fr/vite/) a
trace visualizing open-source tool. To open the file paje .t race with ViTE, use the following command:

$ vite paje.trace
Once the file is opened in VITE interface, we will see the figure as shown below:

VITE :: paje.trace o

Generated by Doxygen

https://solverstack.gitlabpages.inria.fr/vite/

4.1 Generating Traces With FxT 23

We can then click the "No arrows" button in task bar of ViTE interface, to better observe the Gantt diagram that
illustrates the start and end dates of the different tasks or activities of a program.

VITE :: paje.trace

e o Erteces o

CORE R R MW o D

In the Gantt diagram, the bar types such as devices (CPU or GPU) are displayed on the left side. Each task is
represented by a horizontal rectangle that spans the duration of the task. The rectangles are arranged along a
timeline axis, which is shown at the top of the Gantt diagram and represents the overall duration of the program in
milliseconds. The position of the bar along the timeline shows when the task begins and ends. We can see some
long red bars at the beginning and end of the entire timeline, which represent that the unit is idle. There are no
tasks at these moments, and workers are waiting or in a sleeping state.

4.1.1.1 Zooming in Gantt Diagram

Then as shown in the following figure, press and hold the left mouse button to select the area you want to zoom in
on. Release the button to view the selected area, and we can repeat the zoom action multiple times.

VITE :: paje.trace

e ew Bt e

ORE QW D T

Generated by Doxygen

24 Offline Performance Tools

This zoom result is:

VITE :: paje.trace

SR VN

R Cmgeeon + PEee—

Right-clicking anywhere on the Gantt diagram restores the previous zoom view.
One can press and hold the left mouse button inside the top blue bar to select horizontally, which will horizontally
zoom in on all Gantt diagrams within the selected time range.

VITE :: paje.trace

R

GORE QR AP R T

i

This zoom result is:

Generated by Doxygen

4.1 Generating Traces With FxT

25

VITE : paje.trace

4.1.1.2 Colors in Gantt Diagram

After zooming in, we can observe numerous blocks of varying colors, each block representing a task. Blocks of
diverse colors signify different types of tasks. When we double-click on any block, a pop-up window will show
related status about that task, such as its type and which worker (CPU/GPU) it belongs to, etc.

VITE :: paje.trace

File View Preferences Help

@ RE' LS M o A T2 Noarows Noevents

Trace Resume.
File opened: paje.trace

0 errors and 0 warnings were found during
parsing.

clear trace resume

The state information displayed in the pop-up window can be:

Selection Informations.

state
Value: GEMM
Container: CUDAO_0
Type: Worker State
Date: 16346.5 - 16350.2
Duration: 3.69031
State extra fields
Footprint: 24c34250
GFlop: 1.769472
Iteration: 0
Jobld: 399
NumaNodes:-1_-1_-1
Params:
M960x960x4_M960x960xd_MIEO0XI60xd
Size: 11059200
Subiteration: -1
SubmitOrder: 292

Tag: 4000000000070006
X:7

Value extra fields
Color: 0 0.752941176470588 0

clear informations

- Zoom: 16613% -

+ Value: refers to a type of task, which can be assigned as a task name (instead of the default unknown) by
filling the optional starpu_codelet::name, or assigning it a performance model. The name can also be set with
the field starpu_task::name or by using STARPU_NAME when calling starpu_task_insert()

» Container: refers to a specific worker where the computation was performed, could be CPU or CUDA

 Type: indicates the type of this block, most often "Worker State”

Generated by Doxygen

26 Offline Performance Tools

» Date: represents a range of dates during which the computation was performed

« Duration: represents the duration of the computation

» Footprint: provides the data footprint of the task (used as indexing base for performance models)

» GFlop: represents the number of Gflop performed during the computation, as set in starpu_task::flops.

« lteration: refers to the iteration number of the computation, as set by starpu_iteration_push() at the beginning
of submission loops and starpu_iteration_pop() at the end of submission loops

« Jobld: represents a unique identifier for the specific task, as returned by starpu_task_get_job_id()

* NumaNodes: refers to the NUMA node where the data is stored, the environment variable STARPU_FXT+«
_EVENTS needs to contain TASK_VERBOSE_EXTRA, otherwise it will be -1

» Params: represents parameters or input/output types and sizes, possibly indicating the dimensions of the
matrices

+ Size: represents the size of the data being operated on in bytes

+ Subiteration: represents a sub-iteration number if the computation was part of a larger iteration or loop, as
set by starpu_iteration_push()

+ SubmitOrder: represents the order in which the task was submitted by the application

» Tag: represents a unique identifier for the task, which can be set either through starpu_task::tag_id or by
using STARPU_TAG or STARPU_TAG_ONLY when calling starpu_task_insert()

» X:represents an X-coordinate index of the first data written by the task, which was set by starpu_data_set_coordinates()
or starpu_data_set_coordinates_array() function. We can also get the coordinates of the data with
starpu_data_get_coordinates_array() function

* Y:represents an Y-coordinate index of the first data written by the task, which was set by starpu_data_set _coordinates()
or starpu_data_set_coordinates_array() function. We can also get the coordinates of the data with
starpu_data_get_coordinates_array() function

+ Color: represents the color RGB value associated with the task. Tasks are by default shown in green.
To use a different color for every type of task, we can specify the option —c to starpu_fxt_«
tool or in STARPU_GENERATE_TRACE_OPTIONS. Tasks can also be given a specific color by setting
the field starpu_codelet::color or the starpu_task::color. When we call starpu_task_insert(), we can use
STARPU_TASK_COLOR to set the color. Colors are expressed with the following format 0xRRGGBB (e.g.
0xFF0000 for red). See basic_examples/task_insert_color for examples on how to assign
colors

In the shown figure, the set of color as following:
» Dark green represents GEMM
* Light green represents SYRK
* Blue represents TRSM

» Red indicates that the unit is idle, there are no tasks at the moment, it is currently waiting or in a sleeping
state

» Magenta represents Fetchinglnput

To modify the colors in Vite interface, select "Preferences" then "Settings" in the options bar, and then choose the
"States" tab in the newly opened window to select different colors for different operations, as shown in the figure
below. One has to click the reload button at the top left to reload the trace with the new colors.

Generated by Doxygen

4.1 Generating Traces With FxT 27

Preferences

File View Preferences Help

@ RE XX MW o A T [Norous] Noevents General States Events Links Plugin Minimap
Colors set: default Copy Remove
Name Color Visible
1 Allocating M Custom

2 AllocatingR... MCustom
3 Overhead M Custom
4 Buildingtask ~ MICustom
5 Callback M custom
6 DriverCopy MICustom
7 DriverCopy... ~ MCustom
8 Deinitializing ~ MICustom
9 DriverRun M Custom
I 10 Executing M custom
11 Freeing M custom

12 Fetchinginput M Custom

13 GEMM M custom
14 GEMM Wicustom
15 GEMM WiGreen

16 GEMM Custom
17 GEMM Custom
18 GEMM MBlack

19 GEMM Mcustom
20 GEMM M Custom

21 GEMM MMagenta
22 GEMM MBlue

23 Hypervisor M custom
241dle M Custom
25 Initializing M custom
26 Decoding ta... MCustom

27 Post-proces... MCustom

O S U U U U S U S S U U S U S S U S S U S U SN

28 Preparingta... MCustom

Apply Cancel Reload from file

Scale containers/states: * Change position: - OK Cancel

4.1.1.3 Curves in Gantt Diagram

We can see that there is a curve below task blocks, which represents the corresponding GF1op/ s. Double-clicking
near the curve will display the current GF 1op/ s information in a pop-up window (as shown in the figure). If we only
click on the curve, a vertical red line shows up, and we can read on it the GF1op/ s values of all the curves at the
same time.

VITE : paje.trace
File View Preferences Help

@ RE S5 MP o A T2 Noarrows Noevents

Trace Resume Selection Informations

File opened: paje.trace Variable
Container: CUDAO_0

0 errors and 0 warnings were found during Type: GFlop/s

parsing Value: 2246.27
Value: 2246.27

Min: 0
Max: 18595.5

clear trace resume clear informations

Scale containers/states: Change position: - - Zoom: 16613% -

For GPUs, there are three additional curves above the task blocks that can be double-clicked to open a pop-up
window to view information. Let's zoom in on the three curves during the entire execution process as illustrated in
the figure:

Generated by Doxygen

28 Offline Performance Tools

e ew etemcs

G RE! QMW T D e

As shown in the figure below, the top curve represents the amount of GPU-managed memory in MBytes, while the
bottom two curves represent the data transfer between tasks on the CPU and GPU, and between tasks on different
GPUs. They respectively indicate the incoming and outgoing data transfer bandwidth. By looking at the memory
curve, we can observe that the memory usage kept increasing at first, but due to the reutilization of the allocations
by StarPU, the curve gradually became stable later on.

e

CORE QR AP d e

| MwMM\wMLMLJMMMMJUML“L.,HMLMU‘V\HJ Wb badr A
QMUMﬂuw«LuuthJh\L;'huJUMMLu'l\.mn‘m\ }MJMNM‘u:*f%‘MMMML» JJLMMM"LMMMM MMM”M

4.1.1.4 States in Gantt Diagram

Above these three curves, we can see some blocks which represent driver copy (see the top of the figure below), i.e.
a memory copy. The light green blocks represent the actual copies, the dark green blocks represent asynchronous
copy submissions, and the burgundy blocks represent allocating and freeing. Double-clicking on a block allows us
to view relevant information in the pop-up window.

Here, a couple of issues may show up:

Generated by Doxygen

4.1 Generating Traces With FxT 29

« If the "Allocating/Freeing" parts take a long time, it means that StarPU does not manage to re-use data
buffers allocated in the GPU. If you have e.g. a lot of tiles with different sizes, it may be useful to approximate
the allocation size, by using e.g. starpu_matrix_data_register_allocsize() with the proper nx / Id / ny, but an
allocation size that is rounded up, so that buffers with that same rounded size can be shared.

« If the "Asynchronous copy submission" parts take a long time, it means that the CPU buffers are not pinned:
you need to make sure to use starpu_malloc(), or starpu_memory_pin() (see CUDA-specificOptimizations)
so that the CPU buffers are pinned so that the GPU driver can efficiently process transfers asynchronously
(in the "Actual copy" part) rather than synchronously (in the "Asynchronous copy submission" part).

File View Preferences Help

@ Rk LMW o A T2Noarrows Noevents
min: 16319

18

MEMNO.

Change position: - - Zoom: 111890% -

Below the GPU task blocks and GF1ops curve (see the bottom of the figure above), we can see some other blocks
that represent the CPU waiting for the GPU to complete the task. During time, CPU can do variable actions which
are represented by blocks of different colors, such as:

« Dark green represents progressing, it keeps polling for task or data transfer completion
+ Brown-yellow represents scheduling
» Burgundy represents submitting task

» Lake blue represents executing, it is executing the application codelet function. Here it is very short
because the codelet just submits a kernel asynchronously.

» Dark blue represents callback

» Chestnut represents overhead

and we can always double-click on the block to view relevant information in the pop-up window.

4.1.1.5 Transfers in Gantt Diagram

We can horizontally zoom in on a section of the Gantt diagram, and deselect the "No arrows" option. This will allow
us to see a complete process of data transfer, as shown in the following figure:

Generated by Doxygen

30 Offline Performance Tools

VITE : paje.trace

File View Preferences Help

@ RE LMD o A T2 Noarows Noevents

min: 17164

root program

Scale containers/states: * Change position: © | Zoom: 314203% -

In the above figure, we can see a long segment of magenta color in CUDA2_0 task blocks. At the same time, we can
see that there are numerous transfers between other workers during this time period. This indicates that CUDA2_0
is waiting for the completion of the data transfers needed by the task it wants to execute.

4.1.1.6 Scheduler in Gantt Diagram

At the top of the entire Gantt diagram, there are three curves that represent the information of the scheduler. Let's
zoom in on the three curves during the entire execution process as illustrated in the figure below:

VITE :: paje.trace

e gew s oo

ORE QWP & 2] O = —

As shown in the figure below, from top to bottom, they respectively indicate the number of submitted uncompleted
tasks, the number of ready tasks, and the total GF1lop/s for this moment. By double-clicking on the curves, we
can view relevant information in the pop-up window.

Generated by Doxygen

4.1 Generating Traces With FxT 31

VITE :: paje.trace

T R .

e

‘i,xum MJ\W\LAL,WJMm"‘w”v“k ‘Jﬁww'i\nmwlww'wwwﬂw-%*ww“',ﬁ“Lr"”WMl"w,m'“u“fi"“” "y W‘V"NWw"‘rwr\"wwwwm

J

. J‘{' M'ML

4.1.1.7 Main Thread in Gantt Diagram

At the very bottom of the entire Gantt diagram, we will see a red bar, which represents the main thread waiting for
tasks. In front of the red bar (see the figure below), there are some dark red bars, which represent the main thread
submitting tasks.

File View Preferences Help
@ RE' GG M » A T2 Noamows Noevents

+ Zoom: 80382% -

Scale containers/states: = Change position:

Below these red bars, we can see some white vertical lines with small circles on top, which represent events. The
default events can be either task push or task pop or task wait for all. The application can inject its own events at any
desired moment with the function starpu_fxt_trace_user_event() or starpu_fxt_trace_user_event_string(). Similarly,
double-clicking on the white bars allows you to see relevant information in the pop-up window.

4.1.1.8 Statistics in Gantt Diagram

To get statistics on the time spent in runtime overhead, we can use the statistics plugin of ViTE. In the Preferences
menu, select Plugins. In "States Type", select "Worker State". Then click on "Reload" to update the histogram. The

Generated by Doxygen

32 Offline Performance Tools

red "ldle" percentages are due to lack of parallelism, the "Fetchinglnput" percentages are due to waiting for data
transfers. The brown "Overhead" and "Scheduling" percentages are due to the overhead of the runtime and of the
scheduler.

File View Preferences Help
¢ Statistics window
@ Rk LMW o A T2 Noarrows Noevents a

Selected node: Start time
Imin: 4213.06 1

Kind of viewina Horizontal Histoaram
* Moot States tvoe

210 i
Auto reload stats when zoom
V Stacked Reload Exoort

p23 3.s
2 .1 6.6
5.
50.0

MEMNO . MEMMA SR
N ¥ TN T W I T Y R Y T
DA 9o,y e

MEMMA S 7*
1 bt e, o)
MEMNO AL I Lo b Mpm

CuDAO_g

A gt | |
3
MEMMA ..g/_'—_'——*
T S S N 1 T Y

MEMNO.

P W T ST A Y.

cuDAL g
PR | 'V ¥ S B, P | DV L Wy ¥y R N g J

MEMMA. §

249 I 6 (5.5

25.0

it - | Y |
MEwNOL bt ol b ok g A

1GEMM MTRSM MPOTRF MSYRK Hdle BFetchinginput

Scale containers/states: « Change position: - Execute

4.1.2 Creating a DAG With Graphviz

Another generated trace file is a task graph described using the DOT language. The file, created in the current
directory, is named dag. dot file in the current directory. It is possible to get a graphical output of the graph by
using the graphviz library:

$ dot —-Tpdf dag.dot —o output.pdf

4.1.3 Getting Task Details

Another generated trace file gives details on the executed tasks. The file, created in the current directory, is named
tasks.rec. Thisfile is in the recutils format, i.e. Field: wvalue lines, and empty lines are used to
separate each task. This can be used as a convenient input for various ad-hoc analysis tools. By default, it only
contains information about the actual execution. Performance models can be obtained by running starpu_+«
tasks_rec_complete onit:

$ starpu_tasks_rec_complete tasks.rec tasks2.rec

which willadd Est imatedTime lines which contain the performance model-estimated time (in ps) for each worker
starting from 0. Since it needs the performance models, it needs to be run the same way as the application
execution, or at least with STARPU__HOSTNAME set to the hostname of the machine used for execution, to get the
performance models of that machine.

Another possibility is to obtain the performance models as an auxiliary perfmodel . rec file, by using the
starpu_perfmodel_recdump utility:

$ starpu_perfmodel_recdump tasks.rec -o perfmodel.rec

One can also simply call starpu_task_get_name() to get the name of a task.

4.1.4 Getting Scheduling Task Details

The file, sched_tasks. rec, created in the current directory, in the recut i1s format, gives information about
the tasks scheduling, and lists the push and pop actions of the scheduler. For each action, it gives the timestamp,
the job priority and the job id. Each action is separated from the next one by empty lines. The job id associated with
the task can be retrieved by calling starpu_task_get_job_id().

Generated by Doxygen

4.1 Generating Traces With FxT 33

4.1.5 Monitoring Activity

Another generated trace file is an activity trace. The file, created in the current directory, is named activity.+«
data. A profile of the application showing the activity of StarPU during the execution of the program can be
generated:

$ starpu_workers_activity activity.data

This will create a file named activity.eps in the current directory. This picture is composed of two parts. The
first part shows the activity of the different workers. The green sections indicate which proportion of the time was
spent executed kernels on the processing unit. The red sections indicate the proportion of time spent in StarPU: an
important overhead may indicate that the granularity may be too low, and that bigger tasks may be appropriate to
use the processing unit more efficiently. The black sections indicate that the processing unit was blocked because
there was no task to process: this may indicate a lack of parallelism, which may be alleviated by creating more tasks
when it is possible.

The second part of the picture act ivity.eps is a graph showing the evolution of the number of tasks available in
the system during the execution. Ready tasks are shown in black, and tasks that are submitted but not schedulable
yet are shown in grey.

4.1.6 Getting Modular Schedular Animation

When using modular schedulers (i.e. schedulers which use a modular architecture, and whose name start with
"modular-"), the call to starpu_fxt_tool will also produce a trace.html file which can be viewed in a
javascript-enabled web browser. It shows the flow of tasks between the components of the modular scheduler.

4.1.7 Analyzing Time Between MPI Data Transfer and Use by Tasks

starpu_fxt_tool produces a file called comms . rec which describes all MPI communications. The script
starpu_send_recv_data_use.py uses this file and tasks. rec in order to produce two graphs: the first
one shows durations between the reception of data and their usage by a task and the second one plots the same
graph but with elapsed time between send and usage of a data by the sender.

Elapsed time between recv and use (ms) Histogramm

W
ow
oo

1

Worker [mpil-[#*pu]

PRI MW QW
WO S WRIR
N

P00
=R

T T T T
500 1000 1500 2000 2500
Time (ms) - Duration: 2146.221313ms

100 ~

Number of occurences
-y
1

80 1

60 4

40 A

204

T T T
500 1000 1500 2000 2500 10° 10! 102
Time between data reception and its use by a task

Generated by Doxygen

34 Offline Performance Tools

Elapsed time between send and use (ms) Histogramm
|

W

SO
HWMNHOO KR WO Wk

10 A

Worker [mpi]-[*pu]

0o
wWor

T T T T T T T T
250 500 750 1000 1250 1500 1750 2000
Time (ms) - Duration: 1799.818543ms

80 L

Number of occurences

60 -

-
40 A

u
%]
1

204

- |

o
T T T T T T T T 0 T '
250 500 750 1000 1250 1500 1750 2000 10° 10l 102

Time between data sending and its use by a task

4.1.8 Number of events in trace files

When launched with the option —number—-events, starpu_fxt_tool will produce a file named number«
_events.data. This file contains the number of events for each event type. Events are represented with their
key. To convert event keys to event names, you can use the starpu_fxt_number_events_to_names.py
script:

$ starpu_fxt_number_events_to_names.py number_events.data

The number of recorded events (and thus the performance overhead introduced by tracing) can be reduced by
setting which categories of events to record with the environment variable STARPU_FXT_EVENTS.

4.1.9 Limiting The Scope Of The Trace

For computing statistics, it is useful to limit the trace to a given portion of the time of the whole execution. This can

be achieved by calling
starpu_fxt_autostart_profiling(0)

before calling starpu_init(), to prevent tracing from starting immediately. Then
starpu_fxt_start_profiling();

and
starpu_fxt_stop_profiling();

can be used around the portion of code to be traced. This will show up as marks in the trace, and states of workers
will only show up for that portion.

4.2 Performance Of Codelets

After calibrating performance models of codelets (see Performance Model Example and PerformanceModel«
Calibration), they can be examined by using the tool starpu_perfmodel_display:

$ starpu_perfmodel_display -1

file: <malloc_pinned.hannibal>

file: <starpu_slu_lu_model_trsm_ru.hannibal>
file: <starpu_slu_lu_model_getrf.hannibal>
file: <starpu_slu_lu_model_gemm.hannibal>
file: <starpu_slu_lu_model_trsm_ll.hannibal>

Here, the codelets of the example 1u are available. We can examine the performance of the kernel 22 (in micro-
seconds), which is history-based:

Generated by Doxygen

4.2 Performance Of Codelets 35

$ starpu_perfmodel_display -s starpu_slu_lu_model_gemm
performance model for cpu

hash size mean dev n
57618ab0 19660800 2.851069e+05 1.829369%e+04 109
performance model for cuda_0

hash size mean dev n
57618ab0 19660800 1.164144e+04 1.556094e+01 315
performance model for cuda_l

hash size mean dev n
57618ab0 19660800 1.164271e+04 1.330628e+01 360
performance model for cuda_2

hash size mean dev n

57618ab0 19660800 1.166730e+04 3.390395e+02 456

We can see that for the given size, over a sample of a few hundreds of execution, the GPUs are about 20 times
faster than the CPUs (numbers are in us). The standard deviation is extremely low for the GPUs, and less than 10%
for CPUs.

This tool can also be used for regression-based performance models. It will then display the regression formula,
and in the case of non-linear regression, the same performance log as for history-based performance models:

$ starpu_perfmodel_display -s non_linear_memset_regression_based
performance model for cpu_impl 0
Regression : #sample = 1400
Linear: y = alpha size ”~ beta
alpha = 1.335973e-03
beta = 8.024020e-01
Non-Linear: y = a size "b + c
a = 5.429195e-04
b = 8.654899%e-01
c = 9.009313e-01

hash size mean stddev n

a3d3725e 4096 4.763200e+00 7.650928e-01 100
870a30aa 8192 1.827970e+00 2.037181e-01 100
48e988e9 16384 2.652800e+00 1.876459%9e-01 100
961le65d2 32768 4.255530e+00 3.518025e-01 100

The same can also be achieved by using StarPU's library API, see Performance Model and notably the function
starpu_perfmodel_load_symbol(). The source code of the tool starpu_perfmodel_display can be a useful
example.

An XML output can also be printed by using the —x option:

$ tools/starpu_perfmodel_display -x -s non_linear_memset_regression_based
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE StarPUPerfmodel SYSTEM "starpu-perfmodel.dtd">
<!-- symbol non_linear_memset_regression_based —-->
<!-- All times in us -->
<perfmodel version="45">
<combination>
<device type="CPU" id="0" ncores="1"/>
<implementation id="0">
<!-— cpulO_impl0 (Comb0) -->
<!-- time = a size "b + ¢ -——>
<nl_regression a="5.429195e-04" b="8.654899e-01" c="9.009313e-01"/>

<entry footprint="a3d3725e" size="4096" flops="0.000000e+00" mean="4.763200e+00" deviation="7.650928e-01
<entry footprint="870a30aa" size="8192" flops="0.000000e+00" mean="1.827970e+00" deviation="2.037181e-01
<entry footprint="48e988e9" size="16384" flops="0.000000e+00" mean="2.652800e+00" deviation="1.876459%9e-(
<entry footprint="961e65d2" size="32768" flops="0.000000e+00" mean="4.255530e+00" deviation="3.518025e-(

</implementation>
</combination>
</perfmodel>

Thetool starpu_perfmodel_plot canbe used to draw performance models. It writes a . gp file in the current
directory, to be run with the tool gnuplot, which shows the corresponding curve.

$ tools/starpu_perfmodel_plot -s non_linear_memset_regression_based
$ gnuplot starpu_non_linear_ memset_regression_based.gp
$ gv starpu_non_linear_memset_regression_based.png

Generated by Doxygen

36 Offline Performance Tools

Model for codelet non_linear_memset_regression_based.type

100 T T | T T T ML T T T T T T T T
Mon-Linear Regression cpu_impl_ 0 ———
Measured cpu_impl_0
10 |
1k
£
@O '01 =
E
=
0.01 | .
0.001 e
D'DD'D1 " PR | L | L el " PR | el L el M el L ol M s
1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Total data size

When the field starpu_task::flops is set (or STARPU_FLOPS is passed to starpu_task insert()), starpu_«
perfmodel_plot can directly draw a GFlops/s curve, by simply adding the — £ option:

$ starpu_perfmodel_plot —-f -s chol_model_potrf

This will however disable displaying the regression model, for which we can not compute GFlops/s.

Generated by Doxygen

4.2 Performance Of Codelets 37

Model for codelet chol_model 11 type

10 T T T T T T T T
Average cpu0_ncore0_impl0 ———
1t]
uwl
=)
T 01 3 -
]
001 |]
D.DD:L L Ll L M L M L A L P Ll L M| L M| L A
1 10 100 1000 10000 100000 le+0& 1e+07 1e+08 1le+0S

Total data size

When the FxT trace file prof_file_something has been generated, it is possible to get a profiling of each
codelet by calling:

$ starpu_fxt_tool -i /tmp/prof_file_something
$ starpu_codelet_profile distrib.data codelet_name

This will create profiling data files, and a distrib.data. gp file in the current directory, which draws the distri-
bution of codelet time over the application execution, according to data input size.

Generated by Doxygen

38 Offline Performance Tools

10 L T T L T T T T T T T T]
non_linear_ memset_regression_ba arch 0 +]
non_linear_memset_regression_ba arch 1 ¥ I
non_linear_memset_regression_ba arch 2 *
non_linear_memset_regression_ba arch 3 o ™

1t " |
R
W
E R
1]
E]
= 01 ¢t]
5 : : :
S
@
i +
* N
0.01 t S]
[- X -
o O o i 5
B
+
D.DD:L L N 1 N N Ll N L | N N | N N N
1000 10000 100000 le+0E 1le+07 le+0B

Total data size

This is also available in the tool starpu_perfmodel_plot, by passing it the fxt trace:

$ starpu_perfmodel_plot -s non_linear_memset_regression_based —-i /tmp/prof_file_foo_0

It will produce a . gp file which contains both the performance model curves, and the profiling measurements.

Generated by Doxygen

4.2 Performance Of Codelets 39

Model for codelet non_linear_memset_regression_based

10 T T T T
[Profiling cpul_ncored_impl0 +
MNon-Linear Regression cpu0_ncore0_impl0
Average cpu0_ncoreQ_impl0
1

01

Time (ms)

0.01

0.001

0.0001 ; e : — s N . . . L
1000 10000 100000 le+08& le+07 le+08

Total data size

If you have the statistical tool R installed, you can additionally use

$ starpu_codelet_histo_profile distrib.data

Which will create one . pdf file per codelet and per input size, showing a histogram of the codelet execution time
distribution.

Generated by Doxygen

40 Offline Performance Tools

Histogram of val[val = quantile{val, 0.01) & val < quantile(val, 0.99)]

20

T

15
l
Y
e

w
u, S
S
SR R S SRR R RN

Frequency

S,
S

T
S

o J M

[| [| |
0.070 0.072 0.074 0.076 0.078

vallval = quantile(val, 0.01) & val < quantile(val, 0.99)]

4.3 Energy Of Codelets

A performance model of the energy of codelets can also be recorded thanks to the starpu_codelet::energy_model
field of the starpu_codelet structure. StarPU usually cannot record this automatically, since the energy measure-
ment probes are usually not fine-grain enough. It is however possible to measure it by writing a program that
submits batches of tasks, let StarPU measure the energy requirement of the batch, and compute an average, see
MeasuringEnergyandPower .

The energy performance model can then be displayed in Joules with starpu_perfmodel_display just like
the time performance model. The starpu_perfmodel_plot needs an extra —e option to display the proper
unit in the graph:

$ tools/starpu_perfmodel_plot —-e -s non_linear_memset_regression_based_energy
$ gnuplot starpu_non_linear_memset_regression_based_energy.gp
$ gv starpu_non_linear_memset_regression_based_energy.png

Generated by Doxygen

4.3 Energy Of Codelets

41

10.000000 —
1.000000

0.100000

Energy (J)

0.001000
0.000100

0.000010 1

The —f option can also be used to display the performance in terms of GFlops/s/W, i.e. the efficiency:

$ tools/starpu_perfmodel_plot -f -e -s non_linear_memset_regression_based_energy

0.010000

Model for codelet non-linear-memset-regression-based-energy function

" Non-Linear Regression cpu0mpl0 (Comb0) ——

Mon-Linear Regression cpuOmpl1 (Comb0) ——
Average cpu0-impl0 (Comb0O
Average cpu0-impl1 (Comb0

Total data size

$ gnuplot starpu_gflops_non_linear _memset_regression_based_energy.gp
$ gv starpu_gflops_non_linear_memset_regression_based_energy.png

10 100 1000 10000 100000 1x10® 1x107 1x10® 1x10°

Generated by Doxygen

42 Offline Performance Tools

Model for codelet non-linear-memset-regression-based-energy

1 T LSRR | T LELELELRLLY | T TTTIaT 7 TTTTT L LI | T LY | LA |
Average cpuO-implO ECDmbG} —
Average cpu0-impH (Comb0) ———
01| 1
=
un
=
2
LL
)
001 | 1
D_DD1 L r ol L Lol L gl L gl AR | sl ol a1l AT
1 10 100 1000 10000 100000 1x10® 1x107 1x108 1x10°

Total data size

We clearly see here that it is much more energy-efficient to stay in the L3 cache.
One can combine the two time and energy performance models to draw Watts:

$ tools/starpu_perfmodel_plot -se non_linear_memset_regression_based non_linear_memset_regression_based_energy
$ gnuplot starpu_power_non_linear_memset_regression_based.gp
$ gv starpu_power_non_linear_memset_regression_based.eps

Generated by Doxygen

4.4 Data trace and tasks length 43

Model for codelet non-linear-memset-regression-based

1[][][] LTI T T Tl L | L | L | T
2 Average cpuQ-impl0 ECome} —
Average cpul0-impH (Comb0) ———
100 ¢ .
s
@
=
[
o
10 .
1 R

1 10 100 1000 10000 100000 1x10® 1x107 1x10% 1x10°
Total data size

4.4 Data trace and tasks length

It is possible to get statistics about tasks length and data size by using :

$ starpu_fxt_data_trace filename [codeletl codelet2 ... codeletn]

Where filename is the FxT trace file and codeletX the names of the codelets you want to profile (if no names are
specified, starpu_fxt_data_trace will profile them all). This will create a file, data_trace.gp which can
be executed to get a . eps image of these results. On the image, each point represents a task, and each color
corresponds to a codelet.

Generated by Doxygen

44 Offline Performance Tools

Data trace
1e+88 T T — T T —T . . —

" DPOTRF_TRSH
DGEHH

le+87

le+86 [

1868868

data size (B}

18088 P]

1@68 | .

13“ 1 1 P | 1 1 P | 1 1 il 1 1 il 1
B.881 8,61 8.1 1 18 188

tasks size {nz)

4.5 Trace Statistics

More than just codelet performance, it is interesting to get statistics over all kinds of StarPU states (allocations,
data transfers, etc.). This is particularly useful to check what may have gone wrong in the accuracy of the SimGrid
simulation.

This requires the R statistical tool, with the plyr, ggplot2 and data.table packages. If your system distri-
bution does not have packages for these, one can fetch them from CRAN:

R
install.packages ("plyr")
install.packages ("ggplot2")

vV V. V V

(
(
install.packages ("data.table")
install.packages ("knitr")

The pj_dump tool from pajeng is also needed (see https://github.com/schnorr/pajeng)
One can then get textual or . csv statistics over the trace states:

$ starpu_paje_state_stats -v native.trace simgrid.trace

"Value" "Events_native.csv" "Duration_native.csv" "Events_simgrid.csv" "Duration_simgrid.csv"
"Callback" 220 0.075978 220 0

"chol_model_potrf" 10 565.176 10 572.8695
"chol_model_trsm" 45 9184.828 45 9170.719
"chol_model_gemm" 165 64712.07 165 64299.203

$ starpu_paje_state_stats native.trace simgrid.trace

An other way to get statistics of StarPU states (without installing R and pj_dump) isto use the starpu_trace«
_state_stats.py script, which parses the generated t race. rec file instead of the paje.trace file. The
output is similar to the previous script, but it doesn't need any dependencies.

The different prefixes used in trace. rec are:

E: Event type
N: Event name

Generated by Doxygen

https://github.com/schnorr/pajeng

4.5 Trace Statistics 45

Event category
Worker ID
Thread ID
Start time

nH =0

Here's an example on how to use it:

$ starpu_trace_state_stats.py trace.rec | column -t -s ","
"Name" "Count" "Type" "Duration"
"Callback" 220 Runtime 0.075978
"chol_model_potrf" 10 Task 565.176

"chol_model_trsm" 45 Task 9184.828

"chol_model_gemm" 165 Task 64712.07

starpu_trace_state_stats.py can also be used to compute the different efficiencies. Refer to the usage
description to show some examples.
And one can plot histograms of execution times, of several states, for instance:

$ starpu_paje_draw_histogram -n chol_model_potrf,chol_model_trsm,chol_model_gemm native.trace simgrid.trace

and see the resulting pdf file:

Histograms for state distribution

chol_model_11 chol_model_21 chol_model_22
40 - 2
3
=
o
=
2
®
20 2
3
o
2
z ol B
=
360
e
3
40 =
o
.
3
.=
-
20 - g
&
ol

I I I Ll I I I I I I I I I 1 T
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Time [ms]

A quick statistical report can be generated by using:

Generated by Doxygen

46 Offline Performance Tools

$ starpu_paje_summary native.trace simgrid.trace

it includes gantt charts, execution summaries, as well as state duration charts and time distribution histograms.
Other external Paje analysis tools can be used on these traces, one just needs to sort the traces by timestamp order
(which not guaranteed to make recording more efficient):

$ starpu_paje_sort paje.trace

4.6 PAPI counters

Performance counter values could be obtained from the PAPI framework if . /configure detected the libpapi.

In Debian, the 1ibpapi-dev package provides the required files. Additionally, the papi-tools package con-

tains a set of useful tools, for example papi_avail to see which counters are available.

To be able to use Papi counters, one may need to reduce the level of the kernel parameter kernel .perf_<«
event_paranoidto?2orbelow. See https://www.kernel.org/doc/html/latest/admin-guide/perf-secu:
html for the security impact of this parameter.

Then one has to set the STARPU_PROFILING environment variable to 1 and specify which events to record with

the STARPU_PROF_PAPI_EVENTS environment variable. For instance:

export STARPU_PROFILING=1 STARPU_PROF_PAPI_EVENTS="PAPI_TOT_INS PAPI_TOT_CYC"

The comma can also be used to separate events to monitor.

In the current simple implementation, only CPU tasks have their events measured and require CPUs that support
the PAPI events. It is important to note that not all events are available on all systems, and general PAPI recom-
mendations should be followed.

The counter values can be accessed using the profiling interface:

task->profiling_info->papi_values
Also, it can be accessed and/or saved with tracing when using STARPU_FXT_TRACE. With the use of starpu«
_fxt_tool thefile papi. rec is generated containing the following triple:

Task Id
Event Id
Value

External tools like rec2csv can be used to convert this rec file to a csv file, where each line represents a value
for an event for a task.

4.7 Theoretical Lower Bound On Execution Time

StarPU can record a trace of what tasks are needed to complete the application, and then, by using a linear system,
provide a theoretical lower bound of the execution time (i.e. with an ideal scheduling).

The computed bound is not really correct when not taking into account dependencies, but for an application which
have enough parallelism, it is very near to the bound computed with dependencies enabled (which takes a huge lot
more time to compute), and thus provides a good-enough estimation of the ideal execution time.

Then there is an example to show how to use this.

For kernels with history-based performance models (and provided that they are completely calibrated), StarPU
can very easily provide a theoretical lower bound for the execution time of a whole set of tasks. See for instance
examples/lu/lu_example. c: before submitting tasks, call the function starpu_bound_start(), and after com-
plete execution, call starpu_bound_stop(). starpu_bound_print_Ip() or starpu_bound_print_mps() can then be used
to output a Linear Programming problem corresponding to the schedule of your tasks. Or starpu_bound_print_dot()
can be used to print a task dependency graph in the DOT format. Run it through 1p_solve or any other linear
programming solver, and that will give you a lower bound for the total execution time of your tasks. If StarPU was
compiled with the library g1lpk installed, starpu_bound_compute() can be used to solve it immediately and get the
optimized minimum, in ms. Its parameter int eger allows deciding whether integer resolution should be computed
and returned. Besides to solve it immediately and get the optimized minimum starpu_bound_print() can also print
the statistics of actual execution and theoretical upper bound.

The deps parameter tells StarPU whether to take tasks, implicit data, and tag dependencies into account. Tags
released in a callback or similar are not taken into account, only tags associated with a task are. It must be
understood that the linear programming problem size is quadratic with the number of tasks and thus the time to
solve it will be very long, it could be minutes for just a few dozen tasks. You should probably use 1p_solve

Generated by Doxygen

https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html
https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html

4.8 Trace visualization with StarVZ 47

—-timeout 1 test.pl -wmps test.mps to convert the problem to MPS format and then use a better
solver, glpsol might be better than 1p_solve for instance (the ~pcost option may be useful), but sometimes
doesn't manage to converge. cbc might look slower, but it is parallel. For 1p_solve, be sure to try at least all
the —B options. For instance, we often just use 1p_solve -cc -Bl1 -Bb -Bg -Bp -Bf -Br —-BG -Bd
-Bs -BB -Bo —-Bc -Bi,andthe —gr option can also be quite useful. The resulting schedule can be observed
by using the tool starpu_lp2pa je, which converts it into the Paje format.

Data transfer time can only be taken into account when deps is set. Only data transfers inferred from implicit
data dependencies between tasks are taken into account. Other data transfers are assumed to be completely
overlapped.

Setting deps to 0 will only take into account the actual computations on processing units. However, it still properly
takes into account the varying performances of kernels and processing units, which is quite more accurate than just
comparing StarPU performances with the fastest of the kernels being used.

The prio parameter tells StarPU whether to simulate taking into account the priorities as the StarPU scheduler
would, i.e. schedule prioritized tasks before less prioritized tasks, to check to which extend this results to a less
optimal solution. This increases even more computation time.

4.8 Trace visualization with StarVZ

Creating views with StarVZ (see: https://github.com/schnorr/starvz) is made up of two steps.
The initial stage consists of a pre-processing of the traces generated by the application, while the second one
consists of the analysis itself and is carried out with R packages' aid. StarVZ is available at CRAN (https«
://cran.r-project.org/package=starvz)anddepends on p’j_dump (from pajeng)and rec2csv
(from recutils).

To download and install StarVZ, it is necessary to have R, pajeng, and recutils:

For pj_dump and rec2csv
apt install -y pajeng recutils

For R
apt install -y r-base libxml2-dev libssl-dev libcurl4-openssl-dev libgit2-dev libboost-dev

To install the StarVZ, the following command can be used:

echo "install.packages (’starvz’, repos = ’'https://cloud.r-project.org’) | R ——vanilla

To generate traces from an application, it is necessary to set STARPU_GENERATE_TRACE and build StarPU with
FxT. Then, StarVZ can be used on a folder with StarPU FxT traces to produce a default view:

export PATH=$ (Rscript —-e ’cat (system.file("tools/", package = "starvz"), sep="\n")’):S$SPATH

starvz /foo/path-to-fxt-files

An example of default view:

Generated by Doxygen

https://github.com/schnorr/starvz
https://cran.r-project.org/package=starvz
https://cran.r-project.org/package=starvz

48 Offline Performance Tools

. cl_update . null . save_cl_bottom . save_cl_top

CPUO [|]
CPU1 + L] | 1

1142

Application Workers
[ele)
0T
cCc
~o
Ll
CPB: 285

cunao_04__ | NI S A

— scheduler

6000 A
4000 -
2000 +

Submitted

. Deinitializing Idle . Overhead PushingOutput . Sleeping
Fetchinglnput . Initializing Progressing Scheduling

CPUO Mm T 1T T I i i T TN
CpPU1 | I [T N e N VT | I [|
CcpPU2 [i [| (I I LT (] |
CPU3 [T | I [I I | | |

CPU4 | ||I | | [[N (.

CPU7 |||I|IIIII

StarPU Workers
00
iy
cCC
[=)]

CUDAQ_0O

— scheduler

60 -

40 4

Ready

20 -

0 300 600 900 120
Time [ms]

One can also use existing trace files (paje.trace, tasks.rec, data.rec, papi.rec and dag.dot)
skipping the StarVZ internal call to starpu_fxt_tool with:

starvz --use-paje-trace /foo/path-to-trace-files

Alternatively, each StarVZ step can be executed separately. Step 1 can be used on a folder with:

starvz -1 /foo/path-to-fxt-files

Then the second step can be executed directly in R. StarVZ enables a set of different plots that can be configured
on a .yaml file. A default file is provided (default .yaml); also, the options can be changed directly in R.

library (starvz)
library (dplyr)

Generated by Doxygen

4.9 StarPU Eclipse Plugin

49

dtrace <- starvz_read("./", selective = FALSE)

show idleness ratio
dtrace$config$st$idleness = TRUE

show ABE bound
dtracesconfig$stSabeSactive = TRUE

find the last task with dplyr

dtrace$config$stStasks$list = dtraceS$SApplication $>% filter (End == max(End)) $>% .$JobId
show last task dependencies

dtrace$config$stStasks$Sactive = TRUE

dtrace$config$stStasksS$Slevels = 50

plot <- starvz_plot (dtrace)

An example of visualization follows:

. cl_update . null . save cl_bottom . save_cl_top E 10360

CPUO - I H

CPU1 - ‘ ‘ I

CPU2- I

CPU3 - ‘
é CPU4 - I I HI\
g CPUS5 - 2
§ CPUs- E :
E CPU7 - i :
§ CPUS -

CPU9 -

CPU10-

ooes{_ gl [LULLILIN

™ 300 600 900 120

Time [ms]

4.9 StarPU Eclipse Plugin

The StarPU Eclipse Plugin provides the ability to generate the different traces directly from the Eclipse IDE.

4.9.1 Eclipse Installation

Download the Eclipse installer from https://www.eclipse.org/downloads/packages/installer.

When you run the installer, click on Eclipse IDE for Java Developers to start the installation process.

Generated by Doxygen

https://www.eclipse.org/downloads/packages/installer

50 Offline Performance Tools

eclipse

59 Eclipse IDE for Java Devzlapers

Thie essential tools for any java developer, including a Java IDE, a Git client,
XML Editor, Maven and Gradle integration

Eclipse IDE for Enterprise Java and Web Developers

@

Eclipse IDE for C/C++ Developers

@)

Eclipse IDE for Embedded C/C++ Developers

2

Eclipse IDE for PHP Developers

g

To be able to develop C/C++ applications, you need to install the CDT plugin. To do so, go to the Help dropdown
menu at the top of the Eclipse window, choose Install New Software In the new window, enter the URL http«

://download.eclipse.org/tools/cdt/releases/9.10 intothe box Work with and press the return
key.

—] eclipse-workspace - Eclipse IDE
File Edit Navigate Search Project Run Window Help

-) Welcome

(% EC|Ipse Welcome to the Eclipse IDE for Java Developers

Available Software

hitps eclipse.org/tools/c 10 -

type filter text

Name

@ There is no site selected.

/| Hide items that are already installec

What is already installed?

Bt startup

. ®I - I

You need then to select CDT Main Features, then click the button Next twice, accept the terms of the license, and
click the button Finish. Eclipse will ask you to restart.
To be able to compile the plugin, you need to install the plugin development environment (PDE). To do so, go to the

menu Help, choose Eclipse Marketplace.... In the new window, enter PDE into the box Find and press the return
key.

Generated by Doxygen

http://download.eclipse.org/tools/cdt/releases/9.10
http://download.eclipse.org/tools/cdt/releases/9.10

4.9 StarPU Eclipse Plugin 51

Eclipse Marketplace an (=]l

Eclipse Marketplace

Select solutions to install. Press Install Now to proceed with installation.
Press the “more info" link to learn more about a solution.
Search | Recent | Popular| Favorites | Installed Giving loT an Edge

)

Find: | Q, PDE € | Al Markets w | All Categorie: w Go

PDE Incubator Dependency Visualization
0.5.0.200904151517

The plugin adds Graph Plug-in Dependencies View. Use search icon
on toolbar to select plugin in guestion. You can switch to show
Callees or Callers. It is almost... more info

Inaubatiof 1, pDE |ncubator, EPL
PDE dependecnies visualizing

8 #» | Installs: 2,48K (16 last month) Install

Eclipse PDE (Plug-in Development Environment)

latest
‘ The Plug-in Development Environment (PDE) provides tools to
——— create, develop, test, debug, build and deploy Eclipse plug-ins,
" fragments, features, update sites and... more info

by Eclipse, EPL

PDE plugin-dev RCP eclipse-rcp
+ 106 #» Installs: 29,8K (381 last month) Install

PEP Tools: PDE/Eclipse Productivity 1.3.0

The plugins in PEP Tools are intended to help Eclipse RCP
developers get more out of their IDE. It raises the level of support

for features and products to be... more info

Marketplaces

— e

Cancel lish

You can then click on the button Install of the Eclipse PDE latest. You may need to confirm the installation, then
accept the terms of the license, and finally restart the Eclipse IDE.
The installation is now done.

4.9.2 StarPU Eclipse Plugin Compilation and Installation

StarPU can now be compiled and installed with its Eclipse plugin. To do so, you first need to configure StarPU with
the option --enable-eclipse-plugin. The Eclipse IDE executable ec1ipse must be in your PATH.

export PATH=$HOME/usr/local/eclipse/java-2021-03/eclipse:$PATH
mkdir build

cd build

../configure —--prefix=$HOME/usr/local/starpu --enable-eclipse-plugin
make

make install

The StarPU Eclipse plugin is installed in the directory dropins.

$ 1ls SHOME/usr/local/eclipse/java-2021-03/eclipse/dropins
StarPU_1.0.0.202105272056. jar

In the next section, we will show you how to use the plugin.

Generated by Doxygen

52

Offline Performance Tools

4.9.3 StarPU Eclipse Plugin Instruction

Once StarPU has been configured and installed with its Eclipse plugin, you first need to set up your
StarPU.

cd $HOME/usr/local/starpu
source ./bin/starpu_env

To generate traces from the application, it is necessary to set STARPU_FXT_TRACE to 1.

export STARPU_FXT_TRACE=1

environment for

The eclipse workspace together with an example is available in 1ib/starpu/eclipse-plugin.

cd ./lib/starpu/eclipse-plugin
eclipse -data workspace

You can then open the file hello/hello. c, and build the application by pressing Ct r1-B.

S workspace - Eclipse IDE (S
File Edit Source Refactor Navigate Search Project StarPU Run Window Help
(e @ | (o) (e G o B 0 v O v R QU WO @ ® B~ vt - - Q iy @
I2 Package Explorer 31 B®% § =0 hello.c 53 = 0 ouinex BNV e ¥ § -0
~ (S hello 16/* StarPU --- Runtime systen for heterogeneous multicore architectures || u sdioh
» & Debug 3 * Copyright (C) 2009-2021 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria U stdinth
[4 - o starpuh
» & plugin 5 * StarPU is free software; you can redistribute it and/or modify o display_cpu_func(void(], void*) : voic
: 6 * it under the terms of the GNU Lesser General Public License as published by cputuneorTi.
7 * the Free Software Foundation; either version 2.1 of the License, or (at © scal_cpu_func(void®(], void®) : void
8 * your option) any later version o hello_cpu_func(void*{], void®) : void
10 * StarPU is distributed in the hope that it will be useful, but © hello_codelet : struct starpu_codelet
11 * WITHOUT ANY WARRANTY; without even the implied warranty of © scal_codelet : struct starpu_codelet
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE © display_codelet
13- -
14 * See the GNU Lesser General Public License in COPYING.LGPL for more details # NX
15+ o main(void) : int
16
17 #include <stdio.h>
18 #include <stdint.h>
19 #include <starpu.h>
20
21=void display_cpu_func(void *buffers(], void *cl_arg) I
22
23 (void)cl_arg;
2 int nx, 1
25 struct starpu_vector_interface *vector;
26 int *val;
27
28 vector = (struct starpu vector_interface *) buffers(0];
29 nx = STARPU_VECTOR GET NX(vector);
30 val = (int *)STARPU_VECTOR_GET_PTR(vector);
31
32 for (i=0; i<nx; i++
33 fprintf(stdout, "V[3d] = %d\n", i, vallil);
34}
35
36=void scal_cpu_func(void *buffers(], void *cl_arg)
37
38 int factor, nx, i;
39 Struct starpu_vector_interface *vector;
40 int *val;
4
I#] Problems @ Javadoc [@ Declaration & Console 52 & me@~-~v =0
CDT Build Console [hello]
Finished building: ../hello.c
Building target: hello
Invoking: GCC C Linker
gcc -L/home/nfurnento/softs/starpu/starpu.git/build/target/lib -0 *hello” ./hello.o -lstarpu-1.3 -lpthread -lhwloc
Finished building target: hello
13:48:01 Build Finished. 0 errors, 0 warnings. (took 535ms)
hello.c - hello Q
a T —
&) workspace - hello/hello.c - Eclipse IDE (@ a@3
File Edit Source Refactor Navigate Search Project StarPU Run Window Help
o & | (=) o 5 v O v R v Qv B O OO S~ [B wifviH oD D Q iy @
I# Package Explorer 53 § = 0O [@hellocx = O g Outline =0
e 16/* StarPU --- Runt tem for het 1t hitectures.
& hello 1o JHSERL untine system for heterogeneous multicore architectures | TR
'DEM 3+ Copyright (C) 2009-2021 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria u stdioh
| EBheoc | .
» 2 plugin 5 * StarPy is free software; you can redistribute it and/or modify o stdinth
h 6 * it under the terms of the GNU Lesser General Public License as published by U starpu.h
7 the Free Softare Foundation; either version 2.1 of the License (o display_cpu_func(void*(], void®) : void
* your opt ter versi
§ | & your option] any later version o scal_cpu_func(void“(], void*) - vo
10 * StarPU is distributed in the hope that it will be useful, but o hello_cpu_func(void*{), void®) : void
11 * WITHOUT ANY WARRANTY; without even the implied warranty of © hello_codelet - struct starpu_codele
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13- © scal_codelet
13 * See the GNU Lesser General Public License in COPYING.LGPL for more details. ® display_codelet - struct s
15 -
o # NX
17 #include <stdio.h> o main(void) - int
18 #include <stdint.h>
19 #include <starpu.h>
20
21= void display_cpu_func(void *buffers(], void *cl_arg)
2
23 (void)cl arg;
2 int nx, 1;
25 struct starpu_vector_interface *vector;
2% int *val;
27
vector = (struct starpu vector_interface *) buffers(0];
nx = STARPU_VECTOR GET NX(vector);
val = (int *)STARPU_VECTOR GET_PTR(vector);
for (i=0; i<nx; i+s
fprintf(stdout, "V[xd] = sd\n", i, vallil);
iy I
= void scal_cpu_func(void *buffers(], void *cl_arg)
int factor, nx, i;
struct starpu_vector_interface *vector;
int *val;
] Problems @ Javadoc [Declaration © Console 53 X% KpEMES® MOy =0
<terminated> (exit value: 0) hello [C/C++ Appli 1 (28/05/2021 13:58)

[starpu] [starpu_initialize] Warning: FxT is emabled, which slows down a bit, limits scalability and makes worker initialization sequential

Hello world, the answer is 42
vie] = 42
V(1] = 84
V(2] = 126
V(3] = 168
V(4] = 210

Writable Smart Insert 1:1:0

Generated by Doxygen

4.9 StarPU Eclipse Plugin 53

After executing the C/C++ StarPU application, one can use the StarPU plugin to generate and visualise the task
graph of the application. The StarPU plugin eclipse is either available through the icons in the upper toolbar, or from
the dropdown menu StarPU.

— workspace - hello/hello.c - Eclipse IDE i
File Edit Source Refactor Navigate Search Project StarPU Run Window Help
[l | (e [race] Gropt) oo+ 35 v O 4 - 2w~ e D v - Q <)
2 Package Explorer 3 E S f punTaskgraph Ctri+s = B & outline =
~ S hello Generate SVG graph ~ Ctrl+9 rg; BERY o % §
» (= Debug b ntnx, 17
TS 27 Struct starpu_vector_interface *vector; © ENODEV: int
T 28 int *val; u stdiibh
» 2 plugin 29 .
30 vector = (struct starpu vector interface *) buffers(0]; H stdoh
31 nx = STARPU_VECTOR GET NX(vector); U stdinth
2 val = (int *)STARPU_VECTOR GET_PTR(vector); U starpuh
31 for (i=0; i ive) o display_cpu_func(void*{}, void®) - void
35 fprintf(stdout, "V[%d] = sd\n", i, vallil); o scal_cpu_func(voide(], void*) : void
j‘; } o hello_cpu_func(void*(], void®)
36 void scal_cpu_func(void *buffers(], void *cl arg) @ hello_codelet : struct
39 { © scal_codelet : st
0 int factor, nx, i; -
a1 struct starpu_vector_interface *vector; ® display_codelet : struct starpu
42 int *val; # NX
4 © main(void) : int
44 vector = (struct starpu vector interface *) buffers(0];
a5 nx = STARPU_VECTOR GET X(vector);
46 val = (int *)STARPU_VECTOR GET_PTR(vector);
47 starpu_codelet_unpack_args(cl_arg, &factor);
for (i=0; i< nx; iss)
valli] *= factor;
= void hello_cpu_func(void *buffers(], void *cl_arg)
{
(void)buffers;
int answer
starpu_codelet_unpack_args(cl_arg, &answer);
fprintf(stdout, "Hello world, the answer is %d\n", answer);
60 }
61
62 struct starpu_codelet hello_codelet =
63 {
64 -cpu_funcs = {hello_cpu_func},
65 ~cou_funcs name = {"hello cou func"}.
#1 Problems @ Javadoc (&) Declaration & Console 52 "EX% KHRES MYy =0
<terminated> (exit value: 0) hello Debug [C/C++ Application] Debug/hello (07/06/2021 15:26)
[starpu] [starpu_initialize] Warning: FxT is enabled, which slows down a bit, limits scalability and makes worker initialization sequential
V(o] = 42
V(1] = 84
V(2] = 126
Vi) = 168
V(4] = 21
Hello vertd, the answer is 42
hello.c - hello Q

To start, one first need to run the StarPU FxT tool, either through the FxT icon of the toolbar, or from the menu
StarPU/ StarPU FxT Tool. This will call the tool starpu_fxt_tool to generate traces for your applica-
tion execution.

A message dialog box is displayed to confirm the generation of the different traces.

—) workspace - hello/hello.c - Eclipse IDE (e o& &
File Edit Source Refactor Navigate Search Project StarPU Run Window Help
[l & | (o) (race] Grap i | 45 v O v Qv Qv W O @S i 4 B vl Flr » - - Q [)
I8 Package Explorer 53 B % § = 0 @hellocx = O g Outline 32 = n
+ &S hello 16f* StarPU --- Runtime systen for heterogeneous multicore architectures. B R e % 3
2 . % R g
> & Debug 3 * Copyright (C) 2009-2021 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria u stdioh
B hello.c 4. N
» 2 plugin 5 * StarPy is free software; you can redistribute it and/or modif 4 stdinth
- 6 * it under the terms of the GNU Lesser General Public License as publi: shed by o starpuh
71 the Free Softuare Foundation; either version 2.1 of the License, or (» o display_cpu_func(void*(], void®) void
8 * your option) any later version
HIP ption) any o scal_cpu_func(void“(], void¥) - void
1o - StarPy is distributed in the hope that it will be useful, but o hello_cpu_func(void*(), void®) : v
11 * WITHOUT ANY WARRANTY; with the inplied warranty of ® hell et : struct
12+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ello_codelet
13- ® scal_codelet : st
13 * See the GNU Lesser General Public License in COPYING.LGPL for more details. © display_codelet
15+
o # NX
17 #include <stdio.h> o main(void) : int
18 #include <stdint.h>
19 #include <starpu.h> (@
s
J void display_cpu_fun .
K unning Starf
23 roidct_arg;
2 int nx, b
25 Struce starpy ve
2% int *val;
g
28 vector = (struct
29 nx = STARPU_VECTL ____
30 val = (int *)STARPU_VECTOR GET_PTR(vector);
31
32 for (i=0; i<nx; i
33 fprintf(stdout, "V[%d] = sd\n", i, val[il);
31}
35
36 void scal_cpu_func(void *buffers(], void *cl arg)
37 {
38 int factor, nx, i;
39 struct starpu_vector_interface “vector;
0 int *va
a
] Problems @ Javadoc [Declaration & Console 53 X% KpERE®F O3y =0
<terminated> (exit value: 0) hello [C/C++ Appli 1 (28/05/2021 13:58)

[starpu] [starpu_initialize] Warning: FxT is emabled, which slows down a bit, limits scalability and makes worker initialization sequential
Hello vorld, the answer is 42

Vi1 = 5
V(2] = 126
V(3] = 168
V(4] = 210

Writable Smart Insert 1:1:0

One of the generated files is a Paje trace which can be viewed with VIiTE, a trace explorer. To open and visualise the
file paje.trace with VITE, one can select the second command of the StarPU menu, which is named Generate
Paje Trace, or click on the second icon named Trace in the toolbar.

Generated by Doxygen

Offline Performance Tools

workspace - hello/hello.c - Eclipse IDE

File Edit Source Refactor Navigate Search Project StarPU Run Window Help

Grap) ot | 45 v @ 4 StarPU FxT tool Cie6) oo Qiwif~FeGd

BES 8 ctr

Generate SVG graph Ctrl+9 rg;
2 it nx, 1

= 27 struct starpu_vector_interface *vector;
e 28 int *val;

30 vector = (struct starpu vector interface *) buffers[0];
31 nx = STARPU_VECTOR GET_NX(vector);

32 val = (int *)STARPU_VECTOR_GET_PTR(vector);

33

34 for (i=0; i<nx; i++)

35 fprintf(stdout, "V[%d] = %d\n", 1, vallil);

36)

37
385 void scal_cpu_func(void *buffers(], void *cl_arg)
39 {

40 int factor, nx, i;

a1 struct starpu_vector_interface *vector;

a2 int *val;

43

44 vector = (struct starpu_vector_interface *) buffers(0];
s nx = STARPU_VECTOR GET_NX(vector) ;

45 val = (int *)STARPU_VECTOR GET_PTR(vector);
47 starpu_codelet_unpack_args(cl_arg, &factor);
48

49 for (i=0; i<nx; iss)

50 val[i] *= factor;

51)

52
53=void hello_cpu_func(void *buffers(], void *cl_arg)
54

55 (void)buffers;

56 int answer;

57

58 starpu_codelet_unpack_args(cl_arg, &answer);

50 fprintf(stdout, "Hello world, the answer is %d\n", answer);
60 }

61
62 struct starpu_codelet hello_codelet =
63 {

64 -cpu_funcs = {hello_cpu_func},
65 .cou_funcs name = {*hello cou func"}.

2] Problems @ Javadoc [} Declaration & Console 52

s
Qg @
= O g Outline 33 =0

R N
© ENODEV:int
u stdiibh
u stdioh
u stdinth
u starpuh
o display_cpu_func(void*(], void®) : void
o scal_cpu_func(void(], void*) : void
 hello_cpu_func(void*(J, void®) : void
® hello_codelet : struct starpu_codelet
.
.

scal _codelet : struct starpu_codelet
display_codelet : struct starpu_codelet
NX

| o mainwoidyzint |

X% REMES Mm-Sy =0

Debug/hello (07/06/2021 15:26)

<terminated> (exit value: 0) hello Debug [C/C++ Application]

[starpu] [starpu_initialize] Warning: FxT is enabled, which slows down a bit, limits scalability and makes worker initialization sequential
V(o] = 42

V(1] = 84
V(2] = 126
V(3] = 168

V(4] = 210
Hello world, the answer is 42

File View Preferences Help

AT * E_._' g\ Q _ «» - A Q No arrows No events

Y,
‘0I\|5III|1IOI|1I5I|2IOI|2I5\|3IO

Scale containers/states: = ~—— Change position: -

5140|4550 551150

| Zoom: 100% -

Another generated trace file is a task graph described using the DOT language. It is possible to get a graphical
output of the graph by calling the graphviz library. To do this, one can click on the third command of StarPU

menu. A task graph of the application in the png format is then generated.

Generated by Doxygen

4.9 StarPU Eclipse Plugin 55

o

@]StarFUappli:atinn:Ta AT E

In StarPU eclipse plugin, one can display the graph task directly from eclipse, or through a web browser. To do
this, there is another command named Generate SVG graph in the StarPU menu or HGraph in the toolbar of
eclipse.

From the HTML file, you can see the graph task, and by clicking on a task name, it will open the C file in which the
task submission was called (if you have an editor which understands the syntax href="file.c#123").

workspace - hello/hello.c - Eclipse IDE [
File Edit Source Refactor Navigate Search Project StarPU Run Window Help
v G & (e (e o $-0-Q@-Q- WO~ ®@SF-i S B i PrFrOI D aQ im (@
4 Package Explorer 53 = 0 [@hellocR = O g Outline =0
~ Ehello ig (void)cl_arg; BZ R o % §
» (= Debu X, 1
- Ello-c; 28 int *val; U stdlib.h
» 2 plugin 29 N
30 vector = (struct starpu vector interface *) buffers(0]; u stdio.h
31 nx = STARPU_VECTOR_GET_NX(vector); U stdinth
32 val = (int *)STARPU_VECTOR GET PTR(vector); U starpuh
gi for (i = 0; i < nx; i++) e display_cpu_func(void*{], void*) : void
35 fprintf(stdout, "V(%d] = %d\n", i, val(il); scal_cpu_func(void®[], void®) : void
36}

hello_cpu_func(void*(], void*) : void
hello_codelet : struct starpu_codelet

B
°

37

38=void scal_cpu_func(void *buffers(], void *cl arg) °

39 { © scal codelet : struct starpu_codelet

.

#

40 int factor, nx, i;
a1 struct starpu_vector_interface *vector; o e
a2 int *val; —

e
b

vector = (struct starpu vector_interface *) buffers(0];

45 nx = STARPU_VECTOR GET_NX(vector) ;

45 val = (int *)STARPU_VECTOR GET_PTR(vector);
47 starpu_codelet_unpack_args(cl_arg, &factor);
48

49 for (i =0; i <nx; i++)

5 val[i] *= factor;

52
53=void hello_cpu_func(void *buffers(], void *cl_arg)
54

55 (void)buffers;

56 int answer;

57

58 starpu_codelet_unpack_args(cl_arg, &answer);

59 fprintf(stdout, "Hello world, the answer is %d\n", answer);
60

61
62 struct starpu_codelet hello_codelet =
63 {

64 .cpu_funcs = {hello_cpu_func},
65 .cou funcs name = {"hello cou func"}.
I#] Problems @ Javadoc [@ Declaration & Console 53 ®X% KEMRESE MYy =0
<terminated> (exit value: 0) hello Debug [C/C++ Application] i i (07/06/2021 15:26)
[starpu] [starpu_initialize] Warning: FxT is enabled, which slows down a bit, limits scalability and makes worker initialization sequential
Vo] = 42
vi1] = 84
V(2] = 126
V(3] = 168
l

V(4] = 210
Hello world, the answer is 42

Generated by Doxygen

56 Offline Performance Tools

fhomefnfurmento/softsjstar; X ==

— = O i (L file;ymhome/mfurme

@ Debuter avec Firefox

410 Memory Feedback

It is possible to enable memory statistics. To do so, you need to pass the option --enable-memory-stats when running
configure. ltis then possible to call the function starpu_data_display_memory_stats() to display statistics about
the current data handles registered within StarPU.

Moreover, statistics will be displayed at the end of the execution on data handles which have not been cleared out.
This can be disabled by setting the environment variable STARPU_MEMORY_STATS to 0.

For example, by adding a call to the function starpu_data_display_memory_stats() in the fblock example before
unpartitioning the data, one will get something similar to:

$ STARPU_MEMORY_STATS=1 ./examples/filters/fblock

Memory stats

Data on Node #2

Data : 0x5562074e8670
Size : 144

#,,

Data access stats

Generated by Doxygen

4.11 Data Statistics 57

/!'\ Work Underway

Node #0
Direct access : O
Loaded (Owner) : O
Loaded (Shared) : O
Invalidated (was Owner) : 1
Node #2
Direct access : 0
Loaded (Owner) : 1
Loaded (Shared) : O
Invalidated (was Owner) : 0

Data on Node #3

Data : 0x5562074e9338
Size : 96
#__

Data access stats
/!'\ Work Underway

Node #0

Direct access : O

Loaded (Owner) : O

Loaded (Shared) : O

Invalidated (was Owner) : 1
Node #3

Direct access : O

Loaded (Owner) : 1

Loaded (Shared) : O

Invalidated (was Owner) : O

4.11 Data Statistics

Different data statistics can be displayed at the end of the execution of the application. To enable them, you
need to define the environment variable STARPU_ENABLE_STATS. When calling starpu_shutdown() various
statistics will be displayed, execution, MSI cache statistics, allocation cache statistics, and data transfer statis-
tics. The display can be disabled by setting the environment variable STARPU_STATS to 0. If the environ-
ment variable STARPU_BUS_STATS is defined, you can call starpu_profiling_bus_helper_display_summary()
to display statistics about the bus. If the environment variable STARPU_WORKER_STATS is defined, you
can call starpu_profiling_worker_helper_display_summary() to display statistics about the workers. You
can also call starpu_display_stats() which call both starpu_profiling_bus_helper_display_summary() and
starpu_profiling_worker_helper_display_summary() at the same time.

$./examples/cholesky/cholesky_tag
Computation took (in ms)

518.16

Synthetic GFlops : 44.21

MSI cache stats :

TOTAL MSI stats hit 1622 (66.23 %) miss 827 (33.77 %)

$ STARPU_STATS=0 ./examples/cholesky/cholesky_tag
Computation took (in ms)

518.16

Synthetic GFlop/s : 44.21

4.12 Tracing MPI applications

When an MPI execution is traced, especially if the execution is on several nodes, clock synchronization issues can
appear. One may notice them mainly on communications (they are received before they are sent, for instance).

Generated by Doxygen

58 Offline Performance Tools

Each processor can call the function starpu_profiling_set_id() to set the ID used for the profiling trace filename.
This function can be useful when executing an MPI program on several nodes, as it enables each processor to
set a unique ID that helps to differentiate its trace file from the files generated by other processors. By doing this,
it becomes easier to analyze and compare the profiling results of each processor separately, which is particularly
helpful for large-scale parallel applications.

By default, StarPU does two MPI barriers with all MPI processes: one at the beginning of the application execution
and one at the end. Then, starpu_fxt_tool considers all processes leave the barriers at the exact same time,
which makes two points for time synchronization between MPI processes.

However, a simple MPI barrier can be not precise enough, because the assumption all processes leave the barriers
at the exact same time is in reality false. To have a more precise barrier, one may use the mpi_sync_clocks
library (automatically provided when StarPU is built with NewMadeleine, but it can also be used with other MPI
libraries). It provides a synchronized barrier, which aims at actually releasing all processes at the exact same time.
Unfortunately, the gained precision costs some time (several seconds per barrier), that is why one can disable this
precise synchronization with the environment variable STARPU_MPI_TRACE_SYNC_CLOCKS set to 0, and use
the faster MPI barrier instead.

4.13 Verbose Traces

Traces can also be inspected by hand by using the tool £xt_print, for instance:

$ fxt_print -o -f /tmp/prof_file_something

Timings are in nanoseconds (while timings as seen in ViTE are in milliseconds).

Generated by Doxygen

https://gitlab.inria.fr/pm2/pm2/-/tree/master/mpi_sync_clocks
https://gitlab.inria.fr/pm2/pm2/-/tree/master/mpi_sync_clocks

Part |

Appendix

Generated by Doxygen

Chapter 5

The GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright

2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ~http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document free in
the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “‘copyleft”, which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
“‘Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “‘you™. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “‘Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A “‘Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The ““Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

Generated by Doxygen

http://fsf.org/

62

The GNU Free Documentation License

The “‘Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A “‘Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy thatis not Transparent'' is calledOpaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG,
XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The "‘Title Page™ means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, “‘Title Page™ means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

The “‘publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as Acknowledgements'', Dedications",
Endorsements'', orHistory".) To “‘Preserve the Title” of such a section when you modify the Docu-
ment means that it remains a section “‘Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, num-
bering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include
a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a

Generated by Doxygen

63

computer-network location from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

(a) Useinthe Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document).
You may use the same title as a previous version if the original publisher of that version gives permission.

(b) List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this requirement.

—
(¢

State on the Title page the name of the publisher of the Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

@

Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

(g) Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

(h) Include an unaltered copy of this License.

(i) Preserve the section Entitled "‘History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “‘History™ in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

(j) Preserve the network location, if any, given in the Document for public access to a Transparent copy of
the Document, and likewise the network locations given in the Document for previous versions it was
based on. These may be placed in the “‘History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

(k) For any section Entitled Acknowledgements'' orDedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

() Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

(m) Delete any section Entitled “‘Endorsements”. Such a section may not be included in the Modified Ver-
sion.

(n) Do not retitle any existing section to be Entitled “‘Endorsements” or to conflict in title with any Invariant
Section.

(o) Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

Generated by Doxygen

64

The GNU Free Documentation License

You may add a section Entitled “‘Endorsements”, provided it contains nothing but endorsements of your Mod-
ified Version by various parties—for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-«
Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity.
If the Document already includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "‘History” in the various original doc-
uments, forming one section Entitted History''; likewise combine any sections
EntitledAcknowledgements", and any sections Entitled Dedications''. You must delete
all sections EntitledEndorsements.”

. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an “‘aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled Acknowledgements'', Dedications", or “‘History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

Generated by Doxygen

5.1 ADDENDUM: How to use this License for your documents 65

10.

11.

12.

5.1

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior
to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently rein-
stated, receipt of a copy of some or all of the same material does not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a partic-
ular numbered version of this License “‘or any later version” applies to it, you have the option of following the
terms and conditions either of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Docu-
ment specifies that a proxy can decide which future versions of this License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to choose that version for the Document.

RELICENSING

Massive Multiauthor Collaboration Site'' (orMMC Site") means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an example of such a server. A Massive Multiauthor
Collaboration'' (orMMC") contained in the site means any set of copyrightable works thus pub-
lished on the MMC site.

“‘CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Com-
mons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California,
as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “‘eligible for relicensing” if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into
the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1,
2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site
at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (C) year your name. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “*‘GNU Free Documentation License’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “‘with...Texts." line with this:

Generated by Doxygen

http://www.gnu.org/copyleft/

66 The GNU Free Documentation License

with the Invariant Sections being list their titles, with the Front-Cover Texts being list, and with the
Back-Cover Texts being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alter-
natives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

Generated by Doxygen

	1 Organization
	2 Benchmarking StarPU
	2.1 Task Size Overhead
	2.2 Data Transfer Latency
	2.3 Matrix-Matrix Multiplication
	2.4 Cholesky Factorization
	2.5 LU Factorization
	2.6 Simulated Benchmarks

	3 Online Performance Tools
	3.1 On-line Performance Feedback
	3.1.1 Enabling On-line Performance Monitoring
	3.1.2 Per-task Feedback
	3.1.3 Per-codelet Feedback
	3.1.4 Per-worker Feedback
	3.1.5 Bus-related Feedback
	3.1.6 MPI-related Feedback

	3.2 Task And Worker Profiling
	3.3 Performance Model Example
	3.4 Performance Monitoring Counters
	3.4.1 Objectives
	3.4.2 Entities
	3.4.3 Implementation Details
	3.4.4 Exported Counters
	3.4.5 Sequence of operations

	3.5 Performance Steering Knobs
	3.5.1 Objectives
	3.5.2 Entities
	3.5.3 Application Programming Interface
	3.5.4 Implementation Details
	3.5.5 Exported Steering Knobs
	3.5.6 Sequence of operations

	4 Offline Performance Tools
	4.1 Generating Traces With FxT
	4.1.1 Creating a Gantt Diagram
	4.1.2 Creating a DAG With Graphviz
	4.1.3 Getting Task Details
	4.1.4 Getting Scheduling Task Details
	4.1.5 Monitoring Activity
	4.1.6 Getting Modular Schedular Animation
	4.1.7 Analyzing Time Between MPI Data Transfer and Use by Tasks
	4.1.8 Number of events in trace files
	4.1.9 Limiting The Scope Of The Trace

	4.2 Performance Of Codelets
	4.3 Energy Of Codelets
	4.4 Data trace and tasks length
	4.5 Trace Statistics
	4.6 PAPI counters
	4.7 Theoretical Lower Bound On Execution Time
	4.8 Trace visualization with StarVZ
	4.9 StarPU Eclipse Plugin
	4.9.1 Eclipse Installation
	4.9.2 StarPU Eclipse Plugin Compilation and Installation
	4.9.3 StarPU Eclipse Plugin Instruction

	4.10 Memory Feedback
	4.11 Data Statistics
	4.12 Tracing MPI applications
	4.13 Verbose Traces

	I Appendix
	5 The GNU Free Documentation License
	5.1 ADDENDUM: How to use this License for your documents

