
StarPU Handbook - StarPU Basics
for StarPU 1.4.2

Generated by Doxygen.

i

1 Organization 3

2 StarPU Applications 5

2.1 Setting Flags for Compiling, Linking and Running Applications . 5

2.2 Integrating StarPU in a Build System . 6

2.2.1 Integrating StarPU in a Make Build System . 6

2.2.2 Integrating StarPU in a CMake Build System . 6

2.3 Running a Basic StarPU Application . 7

2.4 Running a Basic StarPU Application on Microsoft Visual C . 7

2.5 Kernel Threads Started by StarPU . 8

2.6 Enabling OpenCL . 8

2.7 Storing Performance Model Files . 8

3 Basic Examples 11

3.1 Hello World . 11

3.1.1 Required Headers . 11

3.1.2 Defining A Codelet . 11

3.1.3 Submitting A Task . 11

3.1.4 Execution Of Hello World . 12

3.1.5 Passing Arguments To The Codelet . 12

3.1.6 Defining A Callback . 13

3.1.7 Where To Execute A Codelet . 13

3.2 Vector Scaling . 13

3.2.1 Source Code of Vector Scaling . 13

3.2.2 Execution of Vector Scaling . 14

3.3 Vector Scaling on an Hybrid CPU/GPU Machine . 14

3.3.1 Definition of the CUDA Kernel . 14

3.3.2 Definition of the OpenCL Kernel . 15

3.3.3 Definition of the Main Code . 15

3.3.4 Execution of Hybrid Vector Scaling . 17

4 Full Source Code for the ’Scaling a Vector’ Example 19

4.1 Main Application . 19

4.2 CPU Kernel . 20

4.3 CUDA Kernel . 21

4.4 OpenCL Kernel . 21

4.4.1 Invoking the Kernel . 21

4.4.2 Source of the Kernel . 21

5 Tasks In StarPU 23

5.1 Task Granularity . 23

5.2 Task Submission . 24

5.3 Task Priorities . 24

5.4 Setting Many Data Handles For a Task . 25

Generated by Doxygen

1

5.5 Setting a Variable Number Of Data Handles For a Task . 25

5.6 Insert Task Utility . 25

5.7 Other Task Utility Functions . 27

6 Data Management 29

6.1 Data Interface . 29

6.1.1 Variable Data Interface . 29

6.1.2 Vector Data Interface . 29

6.1.3 Matrix Data Interface . 29

6.1.4 Block Data Interface . 30

6.1.5 Tensor Data Interface . 30

6.1.6 Ndim Data Interface . 30

6.1.7 BCSR Data Interface . 31

6.1.8 CSR Data Interface . 32

6.1.9 COO Data Interface . 32

6.2 Partitioning Data . 32

6.3 Asynchronous Partitioning . 33

6.4 Commute Data Access . 34

6.5 Data Reduction . 34

6.6 Concurrent Data Accesses . 36

6.7 Temporary Buffers . 36

6.7.1 Temporary Data . 37

6.7.2 Scratch Data . 37

7 Scheduling 39

7.1 Task Scheduling Policies . 39

7.1.1 Non Performance Modelling Policies . 39

7.1.2 Performance Model-Based Task Scheduling Policies . 39

7.1.3 Modularized Schedulers . 40

7.2 Task Distribution Vs Data Transfer . 41

8 Examples in StarPU Sources 43

I Appendix 45

9 The GNU Free Documentation License 47

9.1 ADDENDUM: How to use this License for your documents . 51

Generated by Doxygen

2

This manual documents the usage of StarPU version 1.4.2. Its contents was last updated on 2023-11-23.

Copyright © 2009-2023 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

Generated by Doxygen

Chapter 1

Organization

This part presents the basic knowledge of StarPU. It should be read to understand how StarPU works and how to
execute a basic StarPU application.

• Chapter StarPU Applications, setting up Your Own Code shows how to create and run your own StarPU ap-
plications.

• Chapter Basic Examples shows how to implement simple programs that submit tasks to StarPU.

• Chapter Full source code for the ’Scaling a Vector’ example gives the full source code for a vector scaling
application.

The next chapters cover the most important and core concepts in StarPU:

• Chapter Tasks In StarPU explains the basic information on tasks management.

• Chapter Data Management shows how to manage the data layout of your application data by using the differ-
ent data interfaces provided by StarPU.

• Chapter Scheduling explains the scheduling policies provided by StarPU.

Some examples applications are provided from the StarPU sources for you to try. Chapter Examples in StarPU Sources
lists these applications.

Generated by Doxygen

4 Organization

Generated by Doxygen

Chapter 2

StarPU Applications

2.1 Setting Flags for Compiling, Linking and Running Applications

StarPU provides a pkg-config executable to facilitate the retrieval of necessary compiler and linker flags. This
is useful when compiling and linking an application with StarPU, as certain flags or libraries (such as CUDA or
libspe2) may be required.
If StarPU is not installed in a standard location, the path of StarPU's library must be specified in the environment
variable PKG_CONFIG_PATH to allow pkg-config to find it. For example, if StarPU is installed in $STARPU←↩

_PATH, you can set the variable PKG_CONFIG_PATH like this:

$ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$STARPU_PATH/lib/pkgconfig

The flags required to compile or link against StarPU are then accessible with the following commands:

$ pkg-config --cflags starpu-1.4 # options for the compiler
$ pkg-config --libs starpu-1.4 # options for the linker

Please note that it is still possible to use the API provided in StarPU version 1.0 by calling pkg-config with the
starpu-1.0 package. Similar packages are provided for starpumpi-1.0 and starpufft-1.0. For the
API provided in StarPU version 0.9, you can use pkg-config with the libstarpu package. Similar packages
are provided for libstarpumpi and libstarpufft.
Make sure that pkg-config -libs starpu-1.4 produces valid output before going further. To achieve this,
make sure that your PKG_CONFIG_PATH is correctly set to the location where starpu-1.4.pc was installed
during the make install process.
Furthermore, if you intend to link your application statically, remember to include the -static option during the
linking process.
Additionally, for runtime execution, it is necessary to set the LD_LIBRARY_PATH environment variable. This
ensures that dynamic libraries are located and loaded correctly during runtime.

$ export LD_LIBRARY_PATH=$STARPU_PATH/lib:$LD_LIBRARY_PATH

And finally you should set the PATH variable to get access to various StarPU tools:

$ export PATH=$PATH:$STARPU_PATH/bin

Run the following command to ensure that StarPU is executing properly and successfully detecting your hardware.
If any issues arise, examine the output of lstopo from the hwloc project and report any problems either to the
hwloc project or to us.

$ starpu_machine_display

A tool is provided to help set all the environment variables needed by StarPU. Once StarPU is installed in a specific
directory, calling the script bin/starpu_env will set in your current environment the variables STARPU_PATH,
LD_LIBRARY_PATH, PKG_CONFIG_PATH, PATH and MANPATH.

$ source $STARPU_PATH/bin/starpu_env

Generated by Doxygen

6 StarPU Applications

2.2 Integrating StarPU in a Build System

2.2.1 Integrating StarPU in a Make Build System

When using a Makefile, the following lines can be added to set the options for the compiler and the linker:

CFLAGS += $$(pkg-config --cflags starpu-1.4)
LDLIBS += $$(pkg-config --libs starpu-1.4)

If you have a test-starpu.c file containing for instance:
#include <starpu.h>
#include <stdio.h>
int main(void)
{

int ret;
ret = starpu_init(NULL);
if (ret != 0)
{

return 1;
}
printf("%d CPU cores\n", starpu_worker_get_count_by_type(STARPU_CPU_WORKER));
printf("%d CUDA GPUs\n", starpu_worker_get_count_by_type(STARPU_CUDA_WORKER));
printf("%d OpenCL GPUs\n", starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER));
starpu_shutdown();
return 0;

}

You can build it with make test-starpu and run it with ./test-starpu

2.2.2 Integrating StarPU in a CMake Build System

This section shows a minimal example integrating StarPU in an existing application's CMake build system.
Let's assume we want to build an executable from the following source code using CMake:
#include <starpu.h>
#include <stdio.h>
int main(void)
{

int ret;
ret = starpu_init(NULL);
if (ret != 0)
{

return 1;
}
printf("%d CPU cores\n", starpu_worker_get_count_by_type(STARPU_CPU_WORKER));
printf("%d CUDA GPUs\n", starpu_worker_get_count_by_type(STARPU_CUDA_WORKER));
printf("%d OpenCL GPUs\n", starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER));
starpu_shutdown();
return 0;

}

The CMakeLists.txt file below uses the Pkg-Config support from CMake to autodetect the StarPU installation
and library dependences (such as libhwloc) provided that the PKG_CONFIG_PATH variable is set, and is
sufficient to build a statically-linked executable. This example has been successfully tested with CMake 3.2, though
it may work with earlier CMake 3.x versions.
{File CMakeLists.txt}
cmake_minimum_required (VERSION 3.2)
project (hello_starpu)
find_package(PkgConfig)
pkg_check_modules(STARPU REQUIRED starpu-1.4)
if (STARPU_FOUND)

include_directories (${STARPU_INCLUDE_DIRS})
link_directories (${STARPU_STATIC_LIBRARY_DIRS})
link_libraries (${STARPU_STATIC_LIBRARIES})

else (STARPU_FOUND)
message(FATAL_ERROR "StarPU not found")

endif()
add_executable(hello_starpu hello_starpu.c)

The following CMakeLists.txt implements an alternative, more complex strategy, still relying on Pkg-Config,
but also taking into account additional flags. While more complete, this approach makes CMake's build types
(Debug, Release, ...) unavailable because of the direct affectation to variable CMAKE_C_FLAGS. If both the full
flags support and the build types support are needed, the CMakeLists.txt below may be altered to work
with CMAKE_C_FLAGS_RELEASE, CMAKE_C_FLAGS_DEBUG, and others as needed. This example has been
successfully tested with CMake 3.2, though it may work with earlier CMake 3.x versions.
{File CMakeLists.txt}
cmake_minimum_required (VERSION 3.2)
project (hello_starpu)
find_package(PkgConfig)
pkg_check_modules(STARPU REQUIRED starpu-1.4)
This section must appear before ’add_executable’

Generated by Doxygen

2.3 Running a Basic StarPU Application 7

if (STARPU_FOUND)
CFLAGS other than -I

foreach(CFLAG ${STARPU_CFLAGS_OTHER})
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${CFLAG}")

endforeach()
Static LDFLAGS other than -L
foreach(LDFLAG ${STARPU_STATIC_LDFLAGS_OTHER})

set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${LDFLAG}")
endforeach()
-L directories
link_directories(${STARPU_STATIC_LIBRARY_DIRS})

else (STARPU_FOUND)
message(FATAL_ERROR "StarPU not found")

endif()
add_executable(hello_starpu hello_starpu.c)
This section must appear after ’add_executable’
if (STARPU_FOUND)
-I directories

target_include_directories(hello_starpu PRIVATE ${STARPU_INCLUDE_DIRS})
Static -l libs
target_link_libraries(hello_starpu PRIVATE ${STARPU_STATIC_LIBRARIES})

endif()

2.3 Running a Basic StarPU Application

Basic examples using StarPU are built in the directory examples/basic_examples/ (and installed in $←↩

STARPU_PATH/lib/starpu/examples/). You can for example run the example vector_scal.

$./examples/basic_examples/vector_scal
BEFORE: First element was 1.000000
AFTER: First element is 3.140000

When StarPU is used for the first time, the directory $STARPU_HOME/.starpu/ is created, performance models
will be stored in this directory (STARPU_HOME).
Please note that buses are benchmarked when StarPU is launched for the first time. This may take a few minutes,
or less if libhwloc is installed. This step is done only once per user and per machine.

2.4 Running a Basic StarPU Application on Microsoft Visual C

Batch files are provided to run StarPU applications under Microsoft Visual C. They are installed in $STARPU_←↩

PATH/bin/msvc.
To execute a StarPU application, you first need to set the environment variable STARPU_PATH.

c:\....> cd c:\cygwin\home\ci\starpu\
c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
c:\....> cd bin\msvc
c:\....> starpu_open.bat starpu_simple.c

The batch script will run Microsoft Visual C with a basic project file to run the given application.
The batch script starpu_clean.bat can be used to delete all compilation generated files.
The batch script starpu_exec.bat can be used to compile and execute a StarPU application from the com-
mand prompt.

c:\....> cd c:\cygwin\home\ci\starpu\
c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
c:\....> cd bin\msvc
c:\....> starpu_exec.bat ..\..\..\..\examples\basic_examples\hello_world.c

MSVC StarPU Execution
...
/out:hello_world.exe
...
Hello world (params = {1, 2.00000})
Callback function got argument 0000042
c:\....>

Generated by Doxygen

8 StarPU Applications

2.5 Kernel Threads Started by StarPU

StarPU automatically binds one thread per CPU core. It does not use SMT/hyperthreading because kernels are
usually already optimized for using a full core, and using hyperthreading would make kernel calibration rather ran-
dom.
Since driving GPUs is a CPU-consuming task, StarPU dedicates one core per GPU.
While StarPU tasks are executing, the application is not supposed to do computations in the threads it starts itself,
tasks should be used instead.
If the application needs to reserve some cores for its own computations, it can do so with the field
starpu_conf::reserve_ncpus, get the core IDs with starpu_get_next_bindid(), and bind to them with starpu_bind_thread_on().
Another option is for the application to pause StarPU by calling starpu_pause(), then to perform its own computa-
tions, and then to resume StarPU by calling starpu_resume() so that StarPU can execute tasks.
If a computation library used by the application actually creates its own thread, it may be useful to call
starpu_bind_thread_on_worker() before e.g. initializing the library, so that the library records which binding it is
supposed to use. And then call starpu_bind_thread_on_main() again, or starpu_bind_thread_on_cpu() if a core
was reserved with starpu_get_next_bindid().
In case that computation library wants to bind threads itself, and uses physical numbering instead of logical num-
bering (as defined by hwloc), starpu_cpu_os_index() can be used to convert from StarPU cpuid to OS cpu index.

2.6 Enabling OpenCL

When both CUDA and OpenCL drivers are enabled, StarPU will launch an OpenCL worker for NVIDIA GPUs only if
CUDA is not already running on them. This design choice was necessary as OpenCL and CUDA can not run at the
same time on the same NVIDIA GPU, as there is currently no interoperability between them.
To enable OpenCL, you need either to disable CUDA when configuring StarPU:

$./configure --disable-cuda

or when running applications:

$ STARPU_NCUDA=0 ./application

OpenCL will automatically be started on any device not yet used by CUDA. So on a machine running 4 GPUS, it is
therefore possible to enable CUDA on 2 devices, and OpenCL on the other 2 devices by calling:

$ STARPU_NCUDA=2 ./application

2.7 Storing Performance Model Files

StarPU stores performance model files for bus benchmarking and codelet profiles in different directories.
By default, all files are stored in $STARPU_HOME/.starpu/sampling.
If the environment variable STARPU_HOME is not defined, its default value is $HOME on Unix environments, and
$USERPROFILE on Windows environments.
Environment variables STARPU_PERF_MODEL_DIR and STARPU_PERF_MODEL_PATH can also be used to
specify other directories in which to store performance files (SimulatedBenchmarks).
The configure option --with-perf-model-dir can also be used to define a performance model directory.
When looking for performance files either for bus benchmarking or for codelet performances, StarPU

• first looks in the directory specified by the environment variable STARPU_PERF_MODEL_DIR

• then looks in the directory specified by the configure option --with-perf-model-dir
or in $STARPU_HOME/.starpu/sampling if the option is not set

• then looks in the directories specified by the environment variable STARPU_PERF_MODEL_PATH

• and finally looks in $prefix/share/starpu/perfmodels/sampling

If the files are not present and must be created, they will be created in the first defined directory from the list above.

rm -rf $PWD/xxx && STARPU_PERF_MODEL_DIR=$PWD/xxx ./application

Generated by Doxygen

2.7 Storing Performance Model Files 9

will use performance model files from the directory $STARPU_HOME/.starpu/sampling if they are available,
otherwise will create these files in $STARPU_PERF_MODEL_DIR.
To know the list of directories StarPU will search for performances files, one can use the tool starpu_←↩

perfmodel_display

$ starpu_perfmodel_display -d
directory: </home/user1/.starpu/sampling/codelets/45/>
directory: </usr/local/install/share/starpu/perfmodels/sampling/codelets/45/>

$ STARPU_PERF_MODEL_DIR=/tmp/xxx starpu_perfmodel_display -d
directory: </tmp/xxx/codelets/45/>
directory: </home/user1/.starpu/sampling/codelets/45/>
directory: </usr/local/install/share/starpu/perfmodels/sampling/codelets/45/>

When using the variable STARPU_PERF_MODEL_DIR, the directory will be created if it does not exist when dump-
ing new performance model files.
When using the variable STARPU_PERF_MODEL_PATH, only existing directories will be taken into account.

$ mkdir /tmp/yyy && STARPU_PERF_MODEL_DIR=/tmp/xxx STARPU_PERF_MODEL_PATH=/tmp/zzz:/tmp/yyy starpu_perfmodel_display -d
[starpu][adrets][_perf_model_add_dir] Warning: directory </tmp/zzz> as set by variable STARPU_PERF_MODEL_PATH does not exist
directory: </tmp/xxx/codelets/45/>
directory: </home/user1/.starpu/sampling/codelets/45/>
directory: </tmp/yyy/codelets/45/>
directory: </usr/local/install/share/starpu/perfmodels/sampling/codelets/45/>

Once your application has created the performance files in a given directory, it is thus possible to move these files
in another location and keep using them.

./application
files are created in $HOME/.starpu/sampling
mv $HOME/.starpu/sampling /usr/local/starpu/sampling
STARPU_PERF_MODEL_DIR=/usr/local/starpu/sampling ./application

Generated by Doxygen

10 StarPU Applications

Generated by Doxygen

Chapter 3

Basic Examples

3.1 Hello World

This section shows how to implement a simple program that submits a task to StarPU. The full source code for this
example is available in the file examples/basic_examples/hello_world.c

3.1.1 Required Headers

The header starpu.h should be included in any code using StarPU.
#include <starpu.h>

3.1.2 Defining A Codelet

A codelet is a structure that represents a computational kernel. Such a codelet may contain an implementation
of the same kernel on different architectures (e.g. CUDA, x86, ...). For compatibility, make sure that the whole
structure is properly initialized to zero, either by using the function starpu_codelet_init(), or by letting the compiler
implicitly do it as examplified below.
The field starpu_codelet::nbuffers specifies the number of data buffers that are manipulated by the codelet. Here,
the codelet does not access or modify any data that is controlled by our data management library.
We create a codelet which may only be executed on CPUs. When a CPU core will execute a codelet, it will call the
function cpu_func, which must have the following prototype:
void cpu_func(void *buffers[], void *cl_arg);

In this example, we can ignore the first argument of this function which gives a description of the input and output
buffers (e.g. the size and the location of the matrices) since there is none. We also ignore the second argument,
which is a pointer to optional arguments for the codelet.
void cpu_func(void *buffers[], void *cl_arg)
{

printf("Hello world\n");
}
struct starpu_codelet cl =
{

.cpu_funcs = { cpu_func },

.nbuffers = 0
};

3.1.3 Submitting A Task

Before submitting any tasks to StarPU, starpu_init() must be called, or starpu_initialize() must be called by giving
application arguments. The NULL argument specifies that we use the default configuration. Tasks can then be
submitted until the termination of StarPU – done by a call to starpu_shutdown().
In the example below, a task structure is allocated by a call to starpu_task_create(). This function allocates and fills
the task structure with its default settings, it does not submit the task to StarPU.
The field starpu_task::cl is a pointer to the codelet which the task will execute: in other words, the codelet structure
describes which computational kernel should be offloaded on the different architectures, and the task structure is a
wrapper containing a codelet and the piece of data on which the codelet should operate.
If the field starpu_task::synchronous is non-zero, task submission will be synchronous: the function
starpu_task_submit() will not return until the task has been executed. Note that the function starpu_shutdown() does
not guarantee that asynchronous tasks have been executed before it returns, starpu_task_wait_for_all() can be

Generated by Doxygen

12 Basic Examples

used to this effect, or data can be unregistered (starpu_data_unregister()), which will implicitly wait for all the tasks
scheduled to work on it, unless explicitly disabled thanks to starpu_data_set_default_sequential_consistency_flag()
or starpu_data_set_sequential_consistency_flag().
int main(int argc, char **argv)
{

/* initialize StarPU */
starpu_init(NULL);
struct starpu_task *task = starpu_task_create();
task->cl = &cl; /* Pointer to the codelet defined above */
/* starpu_task_submit will be a blocking call. If unset,

starpu_task_wait() needs to be called after submitting the task. */
task->synchronous = 1;
/* submit the task to StarPU */
starpu_task_submit(task);
/* terminate StarPU */
starpu_shutdown();
return 0;

}

3.1.4 Execution Of Hello World
$ make hello_world
cc $(pkg-config --cflags starpu-1.4) hello_world.c -o hello_world $(pkg-config --libs starpu-1.4)
$./hello_world
Hello world

3.1.5 Passing Arguments To The Codelet

The optional field starpu_task::cl_arg field is a pointer to a buffer (of size starpu_task::cl_arg_size) with some pa-
rameters for the kernel described by the codelet. For instance, if a codelet implements a computational kernel that
multiplies its input vector by a constant, the constant could be specified by the means of this buffer, instead of regis-
tering it as a StarPU data. It must however be noted that StarPU avoids making copy whenever possible and rather
passes the pointer as such, so the buffer which is pointed to must be kept allocated until the task terminates, and if
several tasks are submitted with various parameters, each of them must be given a pointer to their own buffer.
struct params
{

int i;
float f;

};
void cpu_func(void *buffers[], void *cl_arg)
{

struct params *params = cl_arg;
printf("Hello world (params = {%i, %f})\n", params->i, params->f);

}

As said before, the field starpu_codelet::nbuffers specifies the number of data buffers which are manipulated by the
codelet. It does not count the argument — the parameter cl_arg of the function cpu_func — since it is not
managed by our data management library, but just contains trivial parameters.
Be aware that this may be a pointer to a copy of the actual buffer, and not the pointer given by the programmer: if
the codelet modifies this buffer, there is no guarantee that the initial buffer will be modified as well: this for instance
implies that the buffer cannot be used as a synchronization medium. If synchronization is needed, data has to be
registered to StarPU, see Vector Scaling.
int main(int argc, char **argv)
{

/* initialize StarPU */
starpu_init(NULL);
struct starpu_task *task = starpu_task_create();
task->cl = &cl; /* Pointer to the codelet defined above */
struct params params = { 1, 2.0f };
task->cl_arg = ¶ms;
task->cl_arg_size = sizeof(params);
/* starpu_task_submit will be a blocking call */
task->synchronous = 1;
/* submit the task to StarPU */
starpu_task_submit(task);
/* terminate StarPU */
starpu_shutdown();
return 0;

}

$ make hello_world
cc $(pkg-config --cflags starpu-1.4) hello_world.c -o hello_world $(pkg-config --libs starpu-1.4)
$./hello_world
Hello world (params = {1, 2.000000})

Generated by Doxygen

3.2 Vector Scaling 13

3.1.6 Defining A Callback

Once a task has been executed, an optional callback function starpu_task::callback_func is called when defined.
While the computational kernel could be offloaded on various architectures, the callback function is always executed
on a CPU. The pointer starpu_task::callback_arg is passed as an argument to the callback function. The prototype
of a callback function must be:
void callback_function(void *);
void callback_func(void *callback_arg)
{

printf("Callback function (arg %x)\n", callback_arg);
}
int main(int argc, char **argv)
{

/* initialize StarPU */
starpu_init(NULL);
struct starpu_task *task = starpu_task_create();
task->cl = &cl; /* Pointer to the codelet defined above */
task->callback_func = callback_func;
task->callback_arg = 0x42;
/* starpu_task_submit will be a blocking call */
task->synchronous = 1;
/* submit the task to StarPU */
starpu_task_submit(task);
/* terminate StarPU */
starpu_shutdown();
return 0;

}

$ make hello_world
cc $(pkg-config --cflags starpu-1.4) hello_world.c -o hello_world $(pkg-config --libs starpu-1.4)
$./hello_world
Hello world
Callback function (arg 42)

3.1.7 Where To Execute A Codelet
struct starpu_codelet cl =
{

.where = STARPU_CPU,

.cpu_funcs = { cpu_func },

.nbuffers = 0
};

We create a codelet which may only be executed on the CPUs. The optional field starpu_codelet::where is a
bitmask which defines where the codelet may be executed. Here, the value STARPU_CPU means that only CPUs
can execute this codelet. When the optional field starpu_codelet::where is unset, its value is automatically set based
on the availability of the different fields XXX_funcs.

3.2 Vector Scaling

The previous example has shown how to submit tasks. In this section, we show how StarPU tasks can manipulate
data.
The full source code for this example is given in Full source code for the ’Scaling a Vector’ example.

3.2.1 Source Code of Vector Scaling

Programmers can describe the data layout of their application so that StarPU is responsible for enforcing data
coherency and availability across the machine. Instead of handling complex (and non-portable) mechanisms to
perform data movements, programmers only declare which piece of data is accessed and/or modified by a task,
and StarPU makes sure that when a computational kernel starts somewhere (e.g. on a GPU), its data are available
locally.
Before submitting those tasks, programmers first need to declare the different pieces of data to StarPU using the
functions starpu_∗_data_register. To ease the development of applications for StarPU, it is possible to
describe multiple types of data layout. A type of data layout is called an interface. There are different predefined
interfaces available in StarPU, here we will consider the vector interface.
The following lines show how to declare an array of NX elements of type float using the vector interface:
float vector[NX];
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));

The first argument, called the data handle, is an opaque pointer which designates the array within StarPU. This is
also the structure which is used to describe which data is used by a task. The second argument is the node number

Generated by Doxygen

14 Basic Examples

where the data originally resides. Here it is STARPU_MAIN_RAM since the array vector is in the main memory.
Then comes the pointer vector where the data can be found in main memory, the number of elements in the
vector and the size of each element. The following shows how to construct a StarPU task that will manipulate the
vector and a constant factor.
float factor = 3.14;
struct starpu_task *task = starpu_task_create();
task->cl = &cl; /* Pointer to the codelet defined below */
task->handles[0] = vector_handle; /* First parameter of the codelet */
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);
task->synchronous = 1;
starpu_task_submit(task);

Since the factor is a mere constant float value parameter, it does not need a preliminary registration, and can just
be passed through the pointer starpu_task::cl_arg like in the previous example. The vector parameter is described
by its handle. starpu_task::handles should be set with the handles of the data, the access modes for the data are
defined in the field starpu_codelet::modes (STARPU_R for read-only, STARPU_W for write-only and STARPU_RW
for read and write access).
The definition of the codelet can be written as follows:
void scal_cpu_func(void *buffers[], void *cl_arg)
{

unsigned i;
float *factor = cl_arg;
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* CPU copy of the vector pointer */
float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
for (i = 0; i < n; i++)

val[i] *= *factor;
}
struct starpu_codelet cl =
{

.cpu_funcs = { scal_cpu_func },

.nbuffers = 1,

.modes = { STARPU_RW }
};

The first argument is an array that gives a description of all the buffers passed in the array starpu_task::handles.
The size of this array is given by the field starpu_codelet::nbuffers. For the sake of genericity, this array contains
pointers to the different interfaces describing each buffer. In the case of the vector interface, the location of the
vector (resp. its length) is accessible in the starpu_vector_interface::ptr (resp. starpu_vector_interface::nx) of this
interface. Since the vector is accessed in a read-write fashion, any modification will automatically affect future
accesses to this vector made by other tasks.
The second argument of the function scal_cpu_func contains a pointer to the parameters of the codelet (given
in starpu_task::cl_arg), so that we read the constant factor from this pointer.

3.2.2 Execution of Vector Scaling
$ make vector_scal
cc $(pkg-config --cflags starpu-1.4) vector_scal.c -o vector_scal $(pkg-config --libs starpu-1.4)
$./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

3.3 Vector Scaling on an Hybrid CPU/GPU Machine

Contrary to the previous examples, the task submitted in this example may not only be executed by the CPUs, but
also by a CUDA device.

3.3.1 Definition of the CUDA Kernel

The CUDA implementation can be written as follows. It needs to be compiled with a CUDA compiler
such as nvcc, the NVIDIA CUDA compiler driver. It must be noted that the vector pointer returned by
STARPU_VECTOR_GET_PTR is here a pointer in GPU memory, so that it can be passed as such to the ker-
nel call vector_mult_cuda.
#include <starpu.h>
static __global__ void vector_mult_cuda(unsigned n, float *val, float factor)
{

unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)

val[i] *= factor;
}

Generated by Doxygen

3.3 Vector Scaling on an Hybrid CPU/GPU Machine 15

extern "C" void scal_cuda_func(void *buffers[], void *_args)
{

float *factor = (float *)_args;
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* local copy of the vector pointer */
float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
unsigned threads_per_block = 64;
unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
vector_mult_cuda«<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()»>(n, val, *factor);
cudaError_t status = cudaGetLastError();
if (status != cudaSuccess) STARPU_CUDA_REPORT_ERROR(status);
cudaStreamSynchronize(starpu_cuda_get_local_stream());

}

3.3.2 Definition of the OpenCL Kernel

The OpenCL implementation can be written as follows. StarPU provides tools to compile a OpenCL kernel stored
in a file.
__kernel void vector_mult_opencl(int nx, __global float* val, float factor)
{

const int i = get_global_id(0);
if (i < nx)
{

val[i] *= factor;
}

}

Contrary to CUDA and CPU, STARPU_VECTOR_GET_DEV_HANDLE has to be used, which returns a cl_mem
(which is not a device pointer, but an OpenCL handle), which can be passed as such to the OpenCL kernel. The
difference is important when using partitioning, see Partitioning Data.
#include <starpu.h>
extern struct starpu_opencl_program programs;
void scal_opencl_func(void *buffers[], void *_args)
{

float *factor = _args;
int id, devid, err; /* OpenCL specific code */
cl_kernel kernel; /* OpenCL specific code */
cl_command_queue queue; /* OpenCL specific code */
cl_event event; /* OpenCL specific code */
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* OpenCL copy of the vector pointer */
cl_mem val = (cl_mem)STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
{ /* OpenCL specific code */

id = starpu_worker_get_id();
devid = starpu_worker_get_devid(id);
err = starpu_opencl_load_kernel(&kernel, &queue, &programs,

"vector_mult_opencl", /* Name of the codelet */
devid);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
err = clSetKernelArg(kernel, 0, sizeof(n), &n);
err |= clSetKernelArg(kernel, 1, sizeof(val), &val);
err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);
if (err) STARPU_OPENCL_REPORT_ERROR(err);

}
{ /* OpenCL specific code */

size_t global=n;
size_t local;
size_t s;
cl_device_id device;
starpu_opencl_get_device(devid, &device);
err = clGetKernelWorkGroupInfo (kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local,

&s);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
if (local > global) local=global;
else global = (global + local-1) / local * local;
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

}
{ /* OpenCL specific code */

clFinish(queue);
starpu_opencl_collect_stats(event);
clReleaseEvent(event);
starpu_opencl_release_kernel(kernel);

}
}

3.3.3 Definition of the Main Code

The CPU implementation is the same as in the previous section.

Generated by Doxygen

16 Basic Examples

Here is the source of the main application. You can notice that the fields starpu_codelet::cuda_funcs and
starpu_codelet::opencl_funcs are set to define the pointers to the CUDA and OpenCL implementations of the task.
/*
* This example demonstrates how to use StarPU to scale an array by a factor.

* It shows how to manipulate data with StarPU’s data management library.

* 1- how to declare a piece of data to StarPU (starpu_vector_data_register)

* 2- how to describe which data are accessed by a task (task->handles[0])

* 3- how a kernel can manipulate the data (buffers[0].vector.ptr)

*/
#include <starpu.h>
#define NX 2048
extern void scal_cpu_func(void *buffers[], void *_args);
extern void scal_sse_func(void *buffers[], void *_args);
extern void scal_cuda_func(void *buffers[], void *_args);
extern void scal_opencl_func(void *buffers[], void *_args);
static struct starpu_codelet cl =
{

.where = STARPU_CPU | STARPU_CUDA | STARPU_OPENCL,
/* CPU implementation of the codelet */
.cpu_funcs = { scal_cpu_func, scal_sse_func },
.cpu_funcs_name = { "scal_cpu_func", "scal_sse_func" },

#ifdef STARPU_USE_CUDA
/* CUDA implementation of the codelet */
.cuda_funcs = { scal_cuda_func },

#endif
#ifdef STARPU_USE_OPENCL

/* OpenCL implementation of the codelet */
.opencl_funcs = { scal_opencl_func },

#endif
.nbuffers = 1,
.modes = { STARPU_RW }

};
#ifdef STARPU_USE_OPENCL
struct starpu_opencl_program programs;
#endif
int main(int argc, char **argv)
{

/* We consider a vector of float that is initialized just as any of C

* data */
float vector[NX];
unsigned i;
for (i = 0; i < NX; i++)

vector[i] = 1.0f;
fprintf(stderr, "BEFORE: First element was %f\n", vector[0]);
/* Initialize StarPU with default configuration */
starpu_init(NULL);

#ifdef STARPU_USE_OPENCL
starpu_opencl_load_opencl_from_file("examples/basic_examples/vector_scal_opencl_kernel.cl", &programs,

NULL);
#endif

/* Tell StaPU to associate the "vector" vector with the "vector_handle"

* identifier. When a task needs to access a piece of data, it should

* refer to the handle that is associated to it.

* In the case of the "vector" data interface:

* - the first argument of the registration method is a pointer to the

* handle that should describe the data

* - the second argument is the memory node where the data (ie. "vector")

* resides initially: STARPU_MAIN_RAM stands for an address in main memory, as

* opposed to an address on a GPU for instance.

* - the third argument is the address of the vector in RAM

* - the fourth argument is the number of elements in the vector

* - the fifth argument is the size of each element.

*/
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));
float factor = 3.14;
/* create a synchronous task: any call to starpu_task_submit will block

* until it is terminated */
struct starpu_task *task = starpu_task_create();
task->synchronous = 1;
task->cl = &cl;
/* the codelet manipulates one buffer in RW mode */
task->handles[0] = vector_handle;
/* an argument is passed to the codelet, beware that this is a

* READ-ONLY buffer and that the codelet may be given a pointer to a

* COPY of the argument */
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);
/* execute the task on any eligible computational resource */
starpu_task_submit(task);
/* StarPU does not need to manipulate the array anymore so we can stop

* monitoring it */
starpu_data_unregister(vector_handle);

#ifdef STARPU_USE_OPENCL
starpu_opencl_unload_opencl(&programs);

#endif
/* terminate StarPU, no task can be submitted after */

Generated by Doxygen

3.3 Vector Scaling on an Hybrid CPU/GPU Machine 17

starpu_shutdown();
fprintf(stderr, "AFTER First element is %f\n", vector[0]);
return 0;

}

3.3.4 Execution of Hybrid Vector Scaling

The Makefile given at the beginning of the section must be extended to give the rules to compile the CUDA source
code. Note that the source file of the OpenCL kernel does not need to be compiled now, it will be compiled at
runtime when calling the function starpu_opencl_load_opencl_from_file().

CFLAGS += $(shell pkg-config --cflags starpu-1.4)
LDLIBS += $(shell pkg-config --libs starpu-1.4)
CC = gcc

vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o

%.o: %.cu
nvcc $(CFLAGS) $< -c $@

clean:
rm -f vector_scal *.o

$ make

and to execute it, with the default configuration:

$./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

or for example, by disabling CPU devices:

$ STARPU_NCPU=0 ./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

or by disabling CUDA devices (which may permit to enable the use of OpenCL, see Enabling OpenCL) :

$ STARPU_NCUDA=0 ./vector_scal
0.000000 3.000000 6.000000 9.000000 12.000000

Generated by Doxygen

18 Basic Examples

Generated by Doxygen

Chapter 4

Full Source Code for the ’Scaling a Vector’ Example

4.1 Main Application
/*
* This example demonstrates how to use StarPU to scale an array by a factor.

* It shows how to manipulate data with StarPU’s data management library.

* 1- how to declare a piece of data to StarPU (starpu_vector_data_register)

* 2- how to describe which data are accessed by a task (task->handles[0])

* 3- how a kernel can manipulate the data (buffers[0].vector.ptr)

*/
#include <starpu.h>
#define NX 2048
extern void scal_cpu_func(void *buffers[], void *_args);
extern void scal_sse_func(void *buffers[], void *_args);
extern void scal_cuda_func(void *buffers[], void *_args);
extern void scal_opencl_func(void *buffers[], void *_args);
static struct starpu_codelet cl =
{

.where = STARPU_CPU | STARPU_CUDA | STARPU_OPENCL,
/* CPU implementation of the codelet */
.cpu_funcs = { scal_cpu_func, scal_sse_func },
.cpu_funcs_name = { "scal_cpu_func", "scal_sse_func" },

#ifdef STARPU_USE_CUDA
/* CUDA implementation of the codelet */
.cuda_funcs = { scal_cuda_func },

#endif
#ifdef STARPU_USE_OPENCL

/* OpenCL implementation of the codelet */
.opencl_funcs = { scal_opencl_func },

#endif
.nbuffers = 1,
.modes = { STARPU_RW }

};
#ifdef STARPU_USE_OPENCL
struct starpu_opencl_program programs;
#endif
int main(int argc, char **argv)
{

/* We consider a vector of float that is initialized just as any of C

* data */
float vector[NX];
unsigned i;
for (i = 0; i < NX; i++)

vector[i] = 1.0f;
fprintf(stderr, "BEFORE: First element was %f\n", vector[0]);
/* Initialize StarPU with default configuration */
starpu_init(NULL);

#ifdef STARPU_USE_OPENCL
starpu_opencl_load_opencl_from_file("examples/basic_examples/vector_scal_opencl_kernel.cl", &programs,

NULL);
#endif

/* Tell StaPU to associate the "vector" vector with the "vector_handle"

* identifier. When a task needs to access a piece of data, it should

* refer to the handle that is associated to it.

* In the case of the "vector" data interface:

* - the first argument of the registration method is a pointer to the

* handle that should describe the data

* - the second argument is the memory node where the data (ie. "vector")

* resides initially: STARPU_MAIN_RAM stands for an address in main memory, as

* opposed to an address on a GPU for instance.

* - the third argument is the address of the vector in RAM

* - the fourth argument is the number of elements in the vector

* - the fifth argument is the size of each element.

*/
starpu_data_handle_t vector_handle;

Generated by Doxygen

20 Full Source Code for the ’Scaling a Vector’ Example

starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));
float factor = 3.14;
/* create a synchronous task: any call to starpu_task_submit will block

* until it is terminated */
struct starpu_task *task = starpu_task_create();
task->synchronous = 1;
task->cl = &cl;
/* the codelet manipulates one buffer in RW mode */
task->handles[0] = vector_handle;
/* an argument is passed to the codelet, beware that this is a

* READ-ONLY buffer and that the codelet may be given a pointer to a

* COPY of the argument */
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);
/* execute the task on any eligible computational resource */
starpu_task_submit(task);
/* StarPU does not need to manipulate the array anymore so we can stop

* monitoring it */
starpu_data_unregister(vector_handle);

#ifdef STARPU_USE_OPENCL
starpu_opencl_unload_opencl(&programs);

#endif
/* terminate StarPU, no task can be submitted after */
starpu_shutdown();
fprintf(stderr, "AFTER First element is %f\n", vector[0]);
return 0;

}

4.2 CPU Kernel
#include <starpu.h>
#include <xmmintrin.h>
/* This kernel takes a buffer and scales it by a constant factor */
void scal_cpu_func(void *buffers[], void *cl_arg)
{

unsigned i;
float *factor = cl_arg;
/*

* The "buffers" array matches the task->handles array: for instance

* task->handles[0] is a handle that corresponds to a data with

* vector "interface", so that the first entry of the array in the

* codelet is a pointer to a structure describing such a vector (ie.

* struct starpu_vector_interface *). Here, we therefore manipulate

* the buffers[0] element as a vector: nx gives the number of elements

* in the array, ptr gives the location of the array (that was possibly

* migrated/replicated), and elemsize gives the size of each elements.

*/
struct starpu_vector_interface *vector = buffers[0];
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(vector);
/* get a pointer to the local copy of the vector: note that we have to

* cast it in (float *) since a vector could contain any type of

* elements so that the .ptr field is actually a uintptr_t */
float *val = (float *)STARPU_VECTOR_GET_PTR(vector);
/* scale the vector */
for (i = 0; i < n; i++)

val[i] *= *factor;
}
void scal_sse_func(void *buffers[], void *cl_arg)
{

float *vector = (float *) STARPU_VECTOR_GET_PTR(buffers[0]);
unsigned int n = STARPU_VECTOR_GET_NX(buffers[0]);
unsigned int n_iterations = n/4;
__m128 *VECTOR = (__m128*) vector;
__m128 FACTOR STARPU_ATTRIBUTE_ALIGNED(16);
float factor = *(float *) cl_arg;
FACTOR = _mm_set1_ps(factor);
unsigned int i;
for (i = 0; i < n_iterations; i++)

VECTOR[i] = _mm_mul_ps(FACTOR, VECTOR[i]);
unsigned int remainder = n%4;
if (remainder != 0)
{

unsigned int start = 4 * n_iterations;
for (i = start; i < start+remainder; ++i)
{

vector[i] = factor * vector[i];
}

}
}

Generated by Doxygen

4.3 CUDA Kernel 21

4.3 CUDA Kernel
#include <starpu.h>
static __global__ void vector_mult_cuda(unsigned n, float *val, float factor)
{

unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)

val[i] *= factor;
}
extern "C" void scal_cuda_func(void *buffers[], void *_args)
{

float *factor = (float *)_args;
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* local copy of the vector pointer */
float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
unsigned threads_per_block = 64;
unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
vector_mult_cuda«<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()»>(n, val, *factor);
cudaError_t status = cudaGetLastError();
if (status != cudaSuccess) STARPU_CUDA_REPORT_ERROR(status);
cudaStreamSynchronize(starpu_cuda_get_local_stream());

}

4.4 OpenCL Kernel

4.4.1 Invoking the Kernel
#include <starpu.h>
extern struct starpu_opencl_program programs;
void scal_opencl_func(void *buffers[], void *_args)
{

float *factor = _args;
int id, devid, err; /* OpenCL specific code */
cl_kernel kernel; /* OpenCL specific code */
cl_command_queue queue; /* OpenCL specific code */
cl_event event; /* OpenCL specific code */
/* length of the vector */
unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
/* OpenCL copy of the vector pointer */
cl_mem val = (cl_mem)STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
{ /* OpenCL specific code */

id = starpu_worker_get_id();
devid = starpu_worker_get_devid(id);
err = starpu_opencl_load_kernel(&kernel, &queue, &programs,

"vector_mult_opencl", /* Name of the codelet */
devid);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
err = clSetKernelArg(kernel, 0, sizeof(n), &n);
err |= clSetKernelArg(kernel, 1, sizeof(val), &val);
err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);
if (err) STARPU_OPENCL_REPORT_ERROR(err);

}
{ /* OpenCL specific code */

size_t global=n;
size_t local;
size_t s;
cl_device_id device;
starpu_opencl_get_device(devid, &device);
err = clGetKernelWorkGroupInfo (kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local,

&s);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
if (local > global) local=global;
else global = (global + local-1) / local * local;
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);
if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

}
{ /* OpenCL specific code */

clFinish(queue);
starpu_opencl_collect_stats(event);
clReleaseEvent(event);
starpu_opencl_release_kernel(kernel);

}
}

4.4.2 Source of the Kernel
__kernel void vector_mult_opencl(int nx, __global float* val, float factor)
{

const int i = get_global_id(0);
if (i < nx)
{

Generated by Doxygen

22 Full Source Code for the ’Scaling a Vector’ Example

val[i] *= factor;
}

}

Generated by Doxygen

Chapter 5

Tasks In StarPU

5.1 Task Granularity

Similar to other runtimes, StarPU introduces some overhead in managing tasks. This overhead, while not always
negligible, is mitigated by its intelligent scheduling and data management capabilities. The typical order of magni-
tude for this overhead is a few microseconds, which is notably smaller than the inherent CUDA overhead. To ensure
that this overhead remains insignificant, the work assigned to a task should be substantial enough.
The length of tasks should ideally be relatively larger to effectively counterbalance this overhead. It iss advised
to consider the offline performance feedback, which provides insights into task lengths. Monitoring task lengths
becomes crucial if you're encountering suboptimal performance.
To gauge the scalability potential based task size, you can run the tests/microbenchs/tasks_size_←↩

overhead.sh script. It provides a visual representation of the speedup achievable with independent tasks of
very small sizes.
This benchmark is installed in $STARPU_PATH/lib/starpu/examples/. It gives a glimpse into how long
a task should be (in µs) for StarPU overhead to be low enough to keep efficiency. The script generates a plot
illustrating the speedup trends for tasks of different sizes, correlated with the number of CPUs in use.
For example, in the figure below, for 128 µs tasks (the red line), StarPU overhead is low enough to guarantee a
good speedup if the number of CPUs is not more than 36. But with the same number of CPUs, 64 µs tasks (the
black line) cannot have a correct speedup. The number of CPUs must be decreased to about 17 in order to keep
efficiency.

Generated by Doxygen

24 Tasks In StarPU

To determine the task size your application is using, it is possible to use starpu_fxt_data_trace as ex-
plained in DataTrace.
The selection of a scheduler in StarPU also plays a significant role. Different schedulers have varying impacts on
the overall execution. For example, the dmda scheduler may require additional time to make decisions, while the
eager scheduler tends to be more immediate in its decisions.
To assess the impact of scheduler choice on your target machine, you can once again utilize the tasks_size←↩

_overhead.sh script. This script provides valuable insights into how different schedulers affect performance in
conjunction with task sizes.

5.2 Task Submission

To enable StarPU to perform online optimizations effectively, it is recommended to submit tasks asynchronously
whenever possible. The goal is to maximize the level of asynchronous submission, allowing StarPU to have more
flexibility in optimizing the scheduling process. Ideally, all tasks should be submitted asynchronously, and the use of
functions like starpu_task_wait_for_all() or starpu_data_unregister() should be limited to waiting for task completion.
StarPU will then be able to rework the whole schedule, overlap computation with communication, manage acceler-
ator local memory usage, etc. A simple example is in the file examples/basic_examples/variable.c

5.3 Task Priorities

StarPU's default behavior considers tasks in the order they are submitted by the application. However, in scenarios
where the application programmer possesses knowledge about certain tasks that should take priority due to their
impact on performance (such as tasks whose output is crucial for subsequent tasks), the starpu_task::priority field
can be utilized to convey this information to StarPU's scheduling process.
An example is provided in the application examples/heat/dw_factolu_tag.c.

Generated by Doxygen

5.4 Setting Many Data Handles For a Task 25

5.4 Setting Many Data Handles For a Task

The maximum number of data that a task can manage is fixed by the macro STARPU_NMAXBUFS. This macro
has a default value which can be customized through the configure option --enable-maxbuffers.
However, if you have specific cases where you need tasks to manage more data than the maximum allowed, you
can use the field starpu_task::dyn_handles when defining a task, along with the field starpu_codelet::dyn_modes
when defining the corresponding codelet.
This dynamic handle mechanism enables tasks to handle additional data beyond the usual limit imposed by
STARPU_NMAXBUFS.
enum starpu_data_access_mode modes[STARPU_NMAXBUFS+1] =
{

STARPU_R, STARPU_R, ...
};
struct starpu_codelet dummy_big_cl =
{

.cuda_funcs = { dummy_big_kernel },

.opencl_funcs = { dummy_big_kernel },

.cpu_funcs = { dummy_big_kernel },

.cpu_funcs_name = { "dummy_big_kernel" },

.nbuffers = STARPU_NMAXBUFS+1,

.dyn_modes = modes
};
task = starpu_task_create();
task->cl = &dummy_big_cl;
task->dyn_handles = malloc(task->cl->nbuffers * sizeof(starpu_data_handle_t));
for(i=0 ; i<task->cl->nbuffers ; i++)
{

task->dyn_handles[i] = handle;
}
starpu_task_submit(task);
starpu_data_handle_t *handles = malloc(dummy_big_cl.nbuffers * sizeof(starpu_data_handle_t));
for(i=0 ; i<dummy_big_cl.nbuffers ; i++)
{

handles[i] = handle;
}
starpu_task_insert(&dummy_big_cl,

STARPU_VALUE, &dummy_big_cl.nbuffers, sizeof(dummy_big_cl.nbuffers),
STARPU_DATA_ARRAY, handles, dummy_big_cl.nbuffers,
0);

The whole code for this complex data interface is available in the file examples/basic_examples/dynamic←↩

_handles.c.

5.5 Setting a Variable Number Of Data Handles For a Task

Normally, the number of data handles given to a task is set with starpu_codelet::nbuffers. This field can however be
set to STARPU_VARIABLE_NBUFFERS, in which case starpu_task::nbuffers must be set, and starpu_task::modes
(or starpu_task::dyn_modes, see Setting Many Data Handles For a Task) should be used to specify the modes for
the handles. Examples in examples/basic_examples/dynamic_handles.c show how to implement it.

5.6 Insert Task Utility

StarPU provides the wrapper function starpu_task_insert() to ease the creation and submission of tasks.
Here is the implementation of a codelet:
void func_cpu(void *descr[], void *_args)
{

int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
int ifactor;
float ffactor;
starpu_codelet_unpack_args(_args, &ifactor, &ffactor);

*x0 = *x0 * ifactor;

*x1 = *x1 * ffactor;
}
struct starpu_codelet mycodelet =
{

.cpu_funcs = { func_cpu },

.cpu_funcs_name = { "func_cpu" },

.nbuffers = 2,

.modes = { STARPU_RW, STARPU_RW }
};

And the call to starpu_task_insert():
starpu_task_insert(&mycodelet,

STARPU_VALUE, &ifactor, sizeof(ifactor),
STARPU_VALUE, &ffactor, sizeof(ffactor),

Generated by Doxygen

26 Tasks In StarPU

STARPU_RW, data_handles[0],
STARPU_RW, data_handles[1],
0);

The call to starpu_task_insert() is equivalent to the following code:
struct starpu_task *task = starpu_task_create();
task->cl = &mycodelet;
task->handles[0] = data_handles[0];
task->handles[1] = data_handles[1];
char *arg_buffer;
size_t arg_buffer_size;
starpu_codelet_pack_args(&arg_buffer, &arg_buffer_size,

STARPU_VALUE, &ifactor, sizeof(ifactor),
STARPU_VALUE, &ffactor, sizeof(ffactor),
0);

task->cl_arg = arg_buffer;
task->cl_arg_size = arg_buffer_size;
int ret = starpu_task_submit(task);

In the example file tests/main/insert_task_value.c, we use these two ways to create and submit tasks.
Instead of calling starpu_codelet_pack_args(), one can also call starpu_codelet_pack_arg_init(), then
starpu_codelet_pack_arg() for each data, then starpu_codelet_pack_arg_fini() as follow:
struct starpu_task *task = starpu_task_create();
task->cl = &mycodelet;
task->handles[0] = data_handles[0];
task->handles[1] = data_handles[1];
struct starpu_codelet_pack_arg_data state;
starpu_codelet_pack_arg_init(&state);
starpu_codelet_pack_arg(&state, &ifactor, sizeof(ifactor));
starpu_codelet_pack_arg(&state, &ffactor, sizeof(ffactor));
starpu_codelet_pack_arg_fini(&state, &task->cl_arg, &task->cl_arg_size);
int ret = starpu_task_submit(task);

A full code example is in file tests/main/pack.c.
Here a similar call using STARPU_DATA_ARRAY.
starpu_task_insert(&mycodelet,

STARPU_DATA_ARRAY, data_handles, 2,
STARPU_VALUE, &ifactor, sizeof(ifactor),
STARPU_VALUE, &ffactor, sizeof(ffactor),
0);

If some part of the task insertion depends on the value of some computation, the macro STARPU_DATA_ACQUIRE_CB
can be very convenient. For instance, assuming that the index variable i was registered as handle A_←↩

handle[i]:
/* Compute which portion we will work on, e.g. pivot */
starpu_task_insert(&which_index, STARPU_W, i_handle, 0);
/* And submit the corresponding task */
STARPU_DATA_ACQUIRE_CB(i_handle, STARPU_R,

starpu_task_insert(&work, STARPU_RW, A_handle[i], 0));

The macro STARPU_DATA_ACQUIRE_CB submits an asynchronous request for acquiring data i for the main
application, and will execute the code given as the third parameter when it is acquired. In other words, as soon
as the value of i computed by the codelet which_index can be read, the portion of code passed as the third
parameter of STARPU_DATA_ACQUIRE_CB will be executed, and is allowed to read from i to use it e.g. as an
index. Note that this macro is only available when compiling StarPU with the compiler gcc. In the example file
tests/datawizard/acquire_cb_insert.c, this macro is used.
StarPU also provides a utility function starpu_codelet_unpack_args() to retrieve the STARPU_VALUE arguments
passed to the task. There is several ways of calling starpu_codelet_unpack_args(). The full code examples are
available in the file tests/main/insert_task_value.c.
void func_cpu(void *descr[], void *_args)
{

int ifactor;
float ffactor;
starpu_codelet_unpack_args(_args, &ifactor, &ffactor);

}
void func_cpu(void *descr[], void *_args)
{

int ifactor;
float ffactor;
starpu_codelet_unpack_args(_args, &ifactor, 0);
starpu_codelet_unpack_args(_args, &ifactor, &ffactor);

}
void func_cpu(void *descr[], void *_args)
{

int ifactor;
float ffactor;
char buffer[100];
starpu_codelet_unpack_args_and_copyleft(_args, buffer, 100, &ifactor, 0);
starpu_codelet_unpack_args(buffer, &ffactor);

}

Instead of calling starpu_codelet_unpack_args(), one can also call starpu_codelet_unpack_arg_init(), then
starpu_codelet_pack_arg() or starpu_codelet_dup_arg() or starpu_codelet_pick_arg() for each data, then

Generated by Doxygen

5.7 Other Task Utility Functions 27

starpu_codelet_unpack_arg_fini() as follow:
void func_cpu(void *descr[], void *_args)
{

int ifactor;
float ffactor;
size_t size = sizeof(int) + 2*sizeof(size_t) + sizeof(int) + sizeof(float);
struct starpu_codelet_pack_arg_data state;
starpu_codelet_unpack_arg_init(&state, _args, size);
starpu_codelet_unpack_arg(&state, (void**)&ifactor, sizeof(ifactor));
starpu_codelet_unpack_arg(&state, (void**)&ffactor, sizeof(ffactor));
starpu_codelet_unpack_arg_fini(&state);

}
void func_cpu(void *descr[], void *_args)
{

int *ifactor;
float *ffactor;
size_t size;
size_t psize = sizeof(int) + 2*sizeof(size_t) + sizeof(int) + sizeof(float);
struct starpu_codelet_pack_arg_data state;
starpu_codelet_unpack_arg_init(&state, _args, psize);
starpu_codelet_dup_arg(&state, (void**)&ifactor, &size);
assert(size == sizeof(*ifactor));
starpu_codelet_dup_arg(&state, (void**)&ffactor, &size);
assert(size == sizeof(*ffactor));
starpu_codelet_unpack_arg_fini(&state);

}
void func_cpu(void *descr[], void *_args)
{

int *ifactor;
float *ffactor;
size_t size;
size_t psize = sizeof(int) + 2*sizeof(size_t) + sizeof(int) + sizeof(float);
struct starpu_codelet_pack_arg_data state;
starpu_codelet_unpack_arg_init(&state, _args, psize);
starpu_codelet_pick_arg(&state, (void**)&ifactor, &size);
assert(size == sizeof(*ifactor));
starpu_codelet_pick_arg(&state, (void**)&ffactor, &size);
assert(size == sizeof(*ffactor));
starpu_codelet_unpack_arg_fini(&state);

}

During unpacking one can also call starpu_codelet_unpack_discard_arg() to skip saving the argument in pointer.
A full code example is in file tests/main/pack.c.

5.7 Other Task Utility Functions

Here a list of other functions to help with task management.

• The function starpu_task_dup() creates a duplicate of an existing task. The new task is identical to the original
task in terms of its parameters, dependencies, and execution characteristics.

• The function starpu_task_set() is used to set the parameters of a task before it is executed, while
starpu_task_build() is used to create a task with the specified parameters.

StarPU provides several functions to help insert data into a task. The function starpu_task_insert_data_make_room()
is used to allocate memory space for a data structure that is required for inserting data into a task. This function is
called before inserting any data handles into a task, and ensures that enough memory is available for the data to
be stored. Once memory is allocated, the data handle can be inserted into the task using the following functions

• starpu_task_insert_data_process_arg() processes a scalar argument of a task and inserts it into the task's
data structure. This function also performs any necessary data allocation and transfer operations.

• starpu_task_insert_data_process_array_arg() processes an array argument of a task and inserts it into the
task's data structure. This function handles the allocation and transfer of the array data, as well as setting up
the appropriate metadata to describe the array.

• starpu_task_insert_data_process_mode_array_arg() processes a mode array argument of a task and inserts
it into the task's data structure. This function handles the allocation and transfer of the mode array data,
as well as setting up the appropriate metadata to describe the mode array. Additionally, this function also
computes the necessary sizes and strides for the data associated with the mode array argument.

Generated by Doxygen

28 Tasks In StarPU

Generated by Doxygen

Chapter 6

Data Management

TODO: intro which mentions consistency among other things

6.1 Data Interface

StarPU provides several data interfaces for programmers to describe the data layout of their application. There are
predefined interfaces already available in StarPU. Users can define new data interfaces as explained in Defining←↩

ANewDataInterface. All functions provided by StarPU are documented in Data Interfaces. You will find a short list
below.

6.1.1 Variable Data Interface

A variable is a given-size byte element, typically a scalar. Here is an example of how to register a variable data to
StarPU by using starpu_variable_data_register(). A full code example for the variable data interface is available in
the file examples/basic_examples/variable.c.
float var = 42.0;
starpu_data_handle_t var_handle;
starpu_variable_data_register(&var_handle, STARPU_MAIN_RAM, (uintptr_t)&var, sizeof(var));

6.1.2 Vector Data Interface

A vector is a fixed number of elements of a given size. Here is an example of how to register a vector data to
StarPU by using starpu_vector_data_register(). A full code example for the vector data interface is available in the
file examples/filters/fvector.c.
float vector[NX];
starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));

Vectors can be partitioned into pieces by using starpu_vector_filter_block(). They can also be parti-
tioned with some overlapping by using starpu_vector_filter_block_shadow(). An example is in the file
examples/filters/shadow.c.
By default, StarPU uses the same size for each piece. If different sizes are desired, starpu_vector_filter_list() or
starpu_vector_filter_list_long() can be used instead.
To just divide in two pieces, starpu_vector_filter_divide_in_2() can be used.
In addition, contiguous variables can be picked from a vector by using starpu_vector_filter_pick_variable() with
starpu_data_filter::get_child_ops set to starpu_vector_filter_pick_variable_child_ops(). An example is in the file
examples/filters/fvector_pick_variable.c.

6.1.3 Matrix Data Interface

To register 2-D matrices with a potential padding, one can use the matrix data interface. Here is an example of how
to register a matrix data to StarPU by using starpu_matrix_data_register().
A full code example for the matrix data interface is available in the file examples/filters/fmatrix.c.
float *matrix;
starpu_data_handle_t matrix_handle;
matrix = (float*)malloc(width * height * sizeof(float));
starpu_matrix_data_register(&matrix_handle, STARPU_MAIN_RAM, (uintptr_t)matrix, width, width, height,

sizeof(float));

Generated by Doxygen

30 Data Management

2D matrices can be partitioned into 2D matrices along the x dimension by using starpu_matrix_filter_block(), and
along the y dimension by using starpu_matrix_filter_vertical_block().
They can also be partitioned with some overlapping by using starpu_matrix_filter_block_shadow() and
starpu_matrix_filter_vertical_block_shadow(). An example is in the file examples/filters/shadow2d.c.
In addition, contiguous vectors can be picked from a matrix along the Y dimension by using starpu_matrix_filter_pick_vector_y()
with starpu_data_filter::get_child_ops set to starpu_matrix_filter_pick_vector_child_ops(). An example is in the file
examples/filters/fmatrix_pick_vector.c.
Variable can be also picked from a matrix by using starpu_matrix_filter_pick_variable() with starpu_data_filter::get_child_ops
needs set to starpu_matrix_filter_pick_variable_child_ops(). An example is in the file examples/filters/fmatrix←↩

_pick_variable.c.

6.1.4 Block Data Interface

To register 3-D matrices with potential paddings on Y and Z dimensions, one can use the block data interface. Here
is an example of how to register a block data to StarPU by using starpu_block_data_register(). A full code example
for the block data interface is available in the file examples/filters/fblock.c.
float *block;
starpu_data_handle_t block_handle;
block = (float*)malloc(nx*ny*nz*sizeof(float));
starpu_block_data_register(&block_handle, STARPU_MAIN_RAM, (uintptr_t)block, nx, nx*ny, nx, ny, nz,

sizeof(float));

3D matrices can be partitioned along the x dimension by using starpu_block_filter_block(), or along the y dimension
by using starpu_block_filter_vertical_block(), or along the z dimension by using starpu_block_filter_depth_block().
They can also be partitioned with some overlapping by using starpu_block_filter_block_shadow(), starpu_block_filter_vertical_block_shadow(),
or starpu_block_filter_depth_block_shadow(). An example is in the file examples/filters/shadow3d.c.
In addition, contiguous matrices can be picked from a block along the Z dimension or the Y dimension by us-
ing starpu_block_filter_pick_matrix_z() or starpu_block_filter_pick_matrix_y() with starpu_data_filter::get_child_ops
set to starpu_block_filter_pick_matrix_child_ops(). An example is in the file examples/filters/fblock_←↩

pick_matrix.c.
Variable can be also picked from a block by using starpu_block_filter_pick_variable() with starpu_data_filter::get_child_ops
set to starpu_block_filter_pick_variable_child_ops(). An example is in the file examples/filters/fblock←↩

_pick_variable.c.

6.1.5 Tensor Data Interface

To register 4-D matrices with potential paddings on Y, Z, and T dimensions, one can use the tensor data interface.
Here is an example of how to register a tensor data to StarPU by using starpu_tensor_data_register(). A full code
example for the tensor data interface is available in the file examples/filters/ftensor.c.
float *block;
starpu_data_handle_t block_handle;
block = (float*)malloc(nx*ny*nz*nt*sizeof(float));
starpu_tensor_data_register(&block_handle, STARPU_MAIN_RAM, (uintptr_t)block, nx, nx*ny, nx*ny*nz, nx, ny,

nz, nt, sizeof(float));

4D matrices can be partitioned along the x dimension by using starpu_tensor_filter_block(), or along the y dimension
by using starpu_tensor_filter_vertical_block(), or along the z dimension by using starpu_tensor_filter_depth_block(),
or along the t dimension by using starpu_tensor_filter_time_block().
They can also be partitioned with some overlapping by using starpu_tensor_filter_block_shadow(), starpu_tensor_filter_vertical_block_shadow(),
starpu_tensor_filter_depth_block_shadow(), or starpu_tensor_filter_time_block_shadow(). An example is in the file
examples/filters/shadow4d.c.
In addition, contiguous blocks can be picked from a block along the T dimension, Z dimension or the Y dimension by
using starpu_tensor_filter_pick_block_t(), starpu_tensor_filter_pick_block_z(), or starpu_tensor_filter_pick_block_y(),
and starpu_data_filter::get_child_ops set to starpu_tensor_filter_pick_block_child_ops(). An example is in the file
examples/filters/ftensor_pick_block.c.
Variable can be also picked from a tensor by using starpu_tensor_filter_pick_variable() with starpu_data_filter::get_child_ops
set to starpu_tensor_filter_pick_variable_child_ops(). An example is in the file examples/filters/ftensor←↩

_pick_variable.c.

6.1.6 Ndim Data Interface

To register N-dim matrices, one can use the Ndim data interface. Here is an example of how to register a 5-dim
data to StarPU by using starpu_ndim_data_register(). A full code example for the ndim data interface is available in
the file examples/filters/fndim.c.

Generated by Doxygen

6.1 Data Interface 31

float *arr5d;
starpu_data_handle_t arr5d_handle;
starpu_malloc((void **)&arr5d, NX*NY*NZ*NT*NG*sizeof(float));
unsigned nn[5] = {NX, NY, NZ, NT, NG};
unsigned ldn[5] = {1, NX, NX*NY, NX*NY*NZ, NX*NY*NZ*NT};
starpu_ndim_data_register(&arr5d_handle, STARPU_MAIN_RAM, (uintptr_t)arr5d, ldn, nn, 5, sizeof(float));

N-dim matrices can be partitioned along the given dimension by using starpu_ndim_filter_block(). They can
also be partitioned with some overlapping by using starpu_ndim_filter_block_shadow(). An example is in the file
examples/filters/shadownd.c.
Taking into account existing data interfaces, there are several specialized functions which can partition a 0-dim array,
1-dim array, 2-dim array, 3-dim array or 4-dim array into

• variables by using starpu_ndim_filter_to_variable() and starpu_data_filter::get_child_ops set to starpu_ndim_filter_to_variable_child_ops()
(see file examples/filters/fndim_to_variable.c),

• vectors by using starpu_ndim_filter_to_vector() and starpu_data_filter::get_child_ops set to starpu_ndim_filter_to_vector_child_ops()
(see file examples/filters/fndim_to_vector.c),

• matrices by using starpu_ndim_filter_to_matrix() and starpu_data_filter::get_child_ops set to starpu_ndim_filter_to_matrix_child_ops()
(see file examples/filters/fndim_to_matrix.c),

• blocks by using starpu_ndim_filter_to_block() and starpu_data_filter::get_child_ops set to starpu_ndim_filter_to_block_child_ops()
(see file examples/filters/fndim_to_block.c),

• or tensors by using starpu_ndim_filter_to_tensor() and starpu_data_filter::get_child_ops set to starpu_ndim_filter_to_tensor_child_ops()
(see file examples/filters/fndim_to_tensor.c).

In addition, contiguous (n-1)dim arrays can be picked from a ndim array along the given dimension by using
starpu_ndim_filter_pick_ndim(). An example is in the file examples/filters/fndim_pick_ndim.c.
In specific cases which consider existing data interfaces, contiguous variables, vectors, matrices, blocks, or tensors
can be along the given dimension picked from a

• 1-dim array by using starpu_ndim_filter_1d_pick_variable() and starpu_data_filter::get_child_ops set to
starpu_ndim_filter_pick_variable_child_ops() (see file examples/filters/fndim_1d_pick_←↩

variable.c),

• 2-dim array by using starpu_ndim_filter_2d_pick_vector() and starpu_data_filter::get_child_ops set to
starpu_ndim_filter_pick_vector_child_ops() (see file examples/filters/fndim_2d_pick_←↩

vector.c),

• 3-dim array by using starpu_ndim_filter_3d_pick_matrix() and starpu_data_filter::get_child_ops set to
starpu_ndim_filter_pick_matrix_child_ops() (see file examples/filters/fndim_3d_pick_←↩

matrix.c),

• 4-dim array by using starpu_ndim_filter_4d_pick_block() and starpu_data_filter::get_child_ops set to
starpu_ndim_filter_pick_block_child_ops() (see file examples/filters/fndim_4d_pick_←↩

block.c),

• or 5-dim array by using starpu_ndim_filter_5d_pick_tensor() and starpu_data_filter::get_child_ops set
to starpu_ndim_filter_pick_tensor_child_ops() (see file examples/filters/fndim_5d_pick_←↩

tensor.c).

Variable can be also picked from a ndim array by using starpu_ndim_filter_pick_variable() with starpu_data_filter::get_child_ops
set to starpu_ndim_filter_pick_variable_child_ops(). An example is in the file examples/filters/fndim_←↩

pick_variable.c.

6.1.7 BCSR Data Interface

BCSR (Blocked Compressed Sparse Row Representation) sparse matrix data can be registered to StarPU using
the bcsr data interface. Here is an example on how to do so by using starpu_bcsr_data_register().
/*
* We use the following matrix:

*
* +----------------+

* | 0 1 0 0 |

* | 2 3 0 0 |

* | 4 5 8 9 |

Generated by Doxygen

32 Data Management

* | 6 7 10 11 |

* +----------------+

*
* nzval = [0, 1, 2, 3] ++ [4, 5, 6, 7] ++ [8, 9, 10, 11]

* colind = [0, 0, 1]

* rowptr = [0, 1, 3]

* r = c = 2

*/
/* Size of the blocks */
int R = 2;
int C = 2;
int NROWS = 2;
int NNZ_BLOCKS = 3; /* out of 4 */
int NZVAL_SIZE = (R*C*NNZ_BLOCKS);
int nzval[NZVAL_SIZE] =
{

0, 1, 2, 3, /* First block */
4, 5, 6, 7, /* Second block */
8, 9, 10, 11 /* Third block */

};
uint32_t colind[NNZ_BLOCKS] =
{

0, /* block-column index for first block in nzval */
0, /* block-column index for second block in nzval */
1 /* block-column index for third block in nzval */

};
uint32_t rowptr[NROWS+1] =
{

0, / * block-index in nzval of the first block of the first row. */
1, / * block-index in nzval of the first block of the second row. */
NNZ_BLOCKS /* number of blocks, to allow an easier element’s access for the kernels */

};
starpu_data_handle_t bcsr_handle;
starpu_bcsr_data_register(&bcsr_handle,

STARPU_MAIN_RAM,
NNZ_BLOCKS,
NROWS,
(uintptr_t) nzval,
colind,
rowptr,
0, /* firstentry */
R,
C,
sizeof(nzval[0]));

An example on how to deal with such matrices is in the file examples/spmv/dw_block_spmv.c.
BCSR data handles can be partitioned into its dense matrix blocks by using starpu_bcsr_filter_canonical_block(),
or split into other BCSR data handles by using starpu_bcsr_filter_vertical_block() (but only split along
the leading dimension is supported, i.e. along adjacent nnz blocks). starpu_data_filter::get_child_ops
needs to be set to starpu_bcsr_filter_canonical_block_child_ops() and starpu_data_filter::get_nchildren set to
starpu_bcsr_filter_canonical_block_get_nchildren(). An example is available in tests/datawizard/bcsr.c.

6.1.8 CSR Data Interface

TODO
To register a Compressed Sparse Row Representation (CSR) sparse matrix, one can use the CSR data interface.
A full code example for the CSR data interface is available in the file mpi/tests/datatypes.c to show how
to register a COO matrix data to StarPU by using starpu_csr_data_register().
CSR data handles can be partitioned into vertical CSR matrices by using starpu_csr_filter_vertical_block(). An
example is available in the file examples/spmv/spmv.c.

6.1.9 COO Data Interface

To register 2-D matrices given in the coordinate format (COO), one can use the COO data interface. A full code
example for the COO data interface is available in the file tests/datawizard/interfaces/coo/coo_←↩

interface.c to show how to register a COO matrix data to StarPU by using starpu_coo_data_register().

6.2 Partitioning Data

An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
#define NX 1048576
#define PARTS 16
int vector[NX];
starpu_data_handle_t handle;

Generated by Doxygen

6.3 Asynchronous Partitioning 33

/* Declare data to StarPU */
starpu_vector_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)vector, NX, sizeof(vector[0]));
/* Partition the vector in PARTS sub-vectors */
struct starpu_data_filter f =
{

.filter_func = starpu_vector_filter_block,

.nchildren = PARTS
};
starpu_data_partition(handle, &f);

The handle of a sub-data block of a composite data block can be retrieved by calling starpu_data_get_child().
Or the task submission first retrieves the number of sub-data blocks in a composite data block by calling
starpu_data_get_nb_children() and then uses the function starpu_data_get_sub_data() or starpu_data_vget_sub_data()
to retrieve the sub-handles to be passed as tasks parameters.
/* Submit a task on each sub-vector */
for (i=0; i<starpu_data_get_nb_children(handle); i++)
{

/* Get subdata number i (there is only 1 dimension) */
starpu_data_handle_t sub_handle = starpu_data_get_sub_data(handle, 1, i);
struct starpu_task *task = starpu_task_create();
task->handles[0] = sub_handle;
task->cl = &cl;
task->synchronous = 1;
task->cl_arg = &factor;
task->cl_arg_size = sizeof(factor);
starpu_task_submit(task);

}

Partitioning can be applied several times by using starpu_data_map_filters() or starpu_data_vmap_filters() or
starpu_data_map_filters_parray() or starpu_data_map_filters_array(), see examples/basic_examples/mult.←↩

c and examples/filters/.
Wherever the whole piece of data is already available, the partitioning will be done in-place, i.e. without allocating
new buffers but just using pointers inside the existing copy. This is particularly important to be aware of when using
OpenCL, where the kernel parameters are not pointers, but cl_mem handles. The kernel thus needs to be also
passed the offset within the OpenCL buffer:
void opencl_func(void *buffers[], void *cl_arg)
{

cl_mem vector = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
unsigned offset = STARPU_BLOCK_GET_OFFSET(buffers[0]);
...
clSetKernelArg(kernel, 0, sizeof(vector), &vector);
clSetKernelArg(kernel, 1, sizeof(offset), &offset);
...

}

And the kernel has to shift from the pointer passed by the OpenCL driver:
__kernel void opencl_kernel(__global int *vector, unsigned offset)
{

block = (__global void *)block + offset;
...

}

When the sub-data is not of the same type as the original data, the field starpu_data_filter::get_child_ops needs to
be set appropriately for StarPU to know which type should be used.
starpu_data_unpartition() should be called in the end to collect back the sub-pieces of data into the original piece
of data.
StarPU provides various interfaces and filters for matrices, vectors, etc., but applications can also write their own
data interfaces and filters, see examples/interface and examples/filters/custom_mf for an exam-
ple, and see DefiningANewDataInterface and DefiningANewDataFilter for documentation.

6.3 Asynchronous Partitioning

The partitioning functions described in the previous section are synchronous: starpu_data_partition() and
starpu_data_unpartition() both wait for all the tasks currently working on the data. This can be a bottleneck
for the application.
An asynchronous API also exists, it works only on handles with sequential consistency. The principle is to first plan
the partitioning, which returns data handles of the partition, which are not functional yet. When submitting tasks,
one can mix using the handles of the partition or the whole data. One can even partition recursively and mix using
handles at different levels of the recursion. Of course, StarPU will have to introduce coherency synchronization.
examples/filters/fmultiple_submit_implicit.c is a complete example using this technique.
One can also look at examples/filters/fmultiple_submit_readonly.c which contains the explicit
coherency synchronization which are automatically introduced by StarPU for examples/filters/fmultiple←↩

_submit_implicit.c.

Generated by Doxygen

34 Data Management

In short, we first register a matrix and plan the partitioning:
starpu_matrix_data_register(&handle, STARPU_MAIN_RAM, (uintptr_t)matrix, NX, NX, NY, sizeof(matrix[0]));
struct starpu_data_filter f_vert =
{

.filter_func = starpu_matrix_filter_block,

.nchildren = PARTS
};
starpu_data_partition_plan(handle, &f_vert, vert_handle);

starpu_data_partition_plan() returns the handles for the partition in vert_handle.
One can then submit tasks working on the main handle, and tasks working on the sub handles vert_←↩

handle. Between using the main handle and the handles vert_handle, StarPU will automatically call
starpu_data_partition_submit() and starpu_data_unpartition_submit(). Or call starpu_data_partition_submit_sequential_consistency()
and starpu_data_unpartition_submit_sequential_consistency() to specify the coherency to be used for
the main handle, or call starpu_data_unpartition_submit_sequential_consistency_cb() to specify a call-
back function for the unpartitiong task. One can also call starpu_data_partition_readonly_submit() and
starpu_data_unpartition_readonly_submit() which do not guarantee coherency if the application attempts to
write to the main handle or any of its sub-handles while a task is still running. However, in read-only case we can
also call starpu_data_partition_readonly_submit_sequential_consistency() to specify the coherency to be used for
the main handle, or call starpu_data_partition_readwrite_upgrade_submit() to upgrade the partitioning of a data
handle from read-only to read-write mode for a specific sub-handle.
After the task has completed using the data partition, starpu_data_partition_clean() or starpu_data_partition_clean_node()
is used to clean up a data partition on the local node or on a specific node.
All this code is asynchronous, just submitting which tasks, partitioning and unpartitioning will be done at runtime.
Planning several partitioning of the same data is also possible, StarPU will unpartition and repartition as needed
when mixing accesses of different partitions. If data access is done in read-only mode, StarPU will allow the different
partitioning to coexist. As soon as a data is accessed in read-write mode, StarPU will automatically unpartition
everything and activate only the partitioning leading to the data being written to.
For instance, for a stencil application, one can split a subdomain into its interior and halos, and then just submit a
task updating the whole subdomain, then submit MPI sends/receives to update the halos, then submit again a task
updating the whole subdomain, etc. and StarPU will automatically partition/unpartition each time.

6.4 Commute Data Access

By default, the implicit dependencies computed from data access use the sequential semantic. Notably, write
accesses are always serialized in the order of submission. In some applicative cases, the write contributions can
actually be performed in any order without affecting the eventual result. In this case, it is useful to drop the strictly
sequential semantic, to improve parallelism by allowing StarPU to reorder the write accesses. This can be done
by using the data access flag STARPU_COMMUTE. Accesses without this flag will however properly be serialized
against accesses with this flag. For instance:
starpu_task_insert(&cl1, STARPU_R, h, STARPU_RW, handle, 0);
starpu_task_insert(&cl2, STARPU_R, handle1, STARPU_RW|STARPU_COMMUTE, handle, 0);
starpu_task_insert(&cl2, STARPU_R, handle2, STARPU_RW|STARPU_COMMUTE, handle, 0);
starpu_task_insert(&cl3, STARPU_R, g, STARPU_RW, handle, 0);

The two tasks running cl2 will be able to commute: depending on whether the value of handle1 or handle2
becomes available first, the corresponding task running cl2 will start first. The task running cl1 will however
always be run before them, and the task running cl3 will always be run after them.
tests/datawizard/commute2.c is a complete example using the data access flag.
If a lot of tasks use the commute access on the same set of data and a lot of them are ready at the same time, it
may become interesting to use an arbiter, see Concurrent Data Accesses.

6.5 Data Reduction

In various cases, some piece of data is used to accumulate intermediate results. For instances, the dot product of
a vector, maximum/minimum finding, the histogram of a picture, etc. When these results are produced along the
whole machine, it would not be efficient to accumulate them in only one place, incurring data transmission each and
access concurrency.
StarPU provides a mode STARPU_REDUX, which permits to optimize this case: it will allocate a buffer on each
worker (lazily), and accumulate intermediate results there. When the data is eventually accessed in the normal
mode STARPU_R, StarPU will collect the intermediate results in just one buffer.
The function starpu_data_set_reduction_methods() must be called to specify how to initialize these buffers, and

Generated by Doxygen

6.5 Data Reduction 35

how to assemble partial results. The function starpu_data_set_reduction_methods_with_args() can also be used to
pass arguments to the reduction and init tasks.
For instance, examples/cg/cg.c uses that to optimize its dot product: it first defines the codelets for initializa-
tion and reduction:
struct starpu_codelet bzero_variable_cl =
{

.cpu_funcs = { bzero_variable_cpu },

.cpu_funcs_name = { "bzero_variable_cpu" },

.cuda_funcs = { bzero_variable_cuda },

.nbuffers = 1,
}
static void accumulate_variable_cpu(void *descr[], void *cl_arg)
{

double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);

*v_dst = *v_dst + *v_src;
}
static void accumulate_variable_cuda(void *descr[], void *cl_arg)
{

double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
cublasaxpy(1, (double)1.0, v_src, 1, v_dst, 1);
cudaStreamSynchronize(starpu_cuda_get_local_stream());

}
struct starpu_codelet accumulate_variable_cl =
{

.cpu_funcs = { accumulate_variable_cpu },

.cpu_funcs_name = { "accumulate_variable_cpu" },

.cuda_funcs = { accumulate_variable_cuda },

.nbuffers = 2,

.modes = {STARPU_RW|STARPU_COMMUTE, STARPU_R},
}

and attaches them as reduction methods for its handle dtq:
starpu_variable_data_register(&dtq_handle, -1, NULL, sizeof(type));
starpu_data_set_reduction_methods(dtq_handle, &accumulate_variable_cl, &bzero_variable_cl);

and dtq_handle can now be used with the mode STARPU_REDUX for the dot products with partitioned vectors:
for (b = 0; b < nblocks; b++)

starpu_task_insert(&dot_kernel_cl,
STARPU_REDUX, dtq_handle,
STARPU_R, starpu_data_get_sub_data(v1, 1, b),
STARPU_R, starpu_data_get_sub_data(v2, 1, b),
0);

During registration, we have here provided NULL, i.e. there is no initial value to be taken into account during
reduction. StarPU will thus only take into account the contributions from the tasks dot_kernel_cl. Also, it will
not allocate any memory for dtq_handle before the tasks dot_kernel_cl are ready to run.
If another dot product has to be performed, one could unregister dtq_handle, and re-register it. But one can also
call starpu_data_invalidate_submit() with the parameter dtq_handle, which will clear all data from the handle,
thus resetting it back to the initial status register(NULL).
The example examples/cg/cg.c also uses reduction for the blocked gemv kernel, leading to yet more relaxed
dependencies and more parallelism.
STARPU_REDUX can also be passed to starpu_mpi_task_insert() in the MPI case. This will however not
produce any MPI communication, but just pass STARPU_REDUX to the underlying starpu_task_insert().
starpu_mpi_redux_data() posts tasks which will reduce the partial results among MPI nodes into the MPI node
which owns the data. The function can be called by users to benefit from fine-tuning such as priority setting. If
users do not call this function, StarPU wraps up reduction patterns automatically. The following example shows
a hypothetical application which collects partial results into data res, then uses it for other computation, before
looping again with a new reduction where the wrap-up of the reduction pattern is explicit:
for (i = 0; i < 100; i++)
{

starpu_mpi_task_insert(MPI_COMM_WORLD, &init_res, STARPU_W, res, 0);
starpu_mpi_task_insert(MPI_COMM_WORLD, &work, STARPU_RW, A, STARPU_R, B, STARPU_REDUX, res, 0);
starpu_mpi_redux_data(MPI_COMM_WORLD, res);
starpu_mpi_task_insert(MPI_COMM_WORLD, &work2, STARPU_RW, B, STARPU_R, res, 0);

}

starpu_mpi_redux_data() is called automatically in various cases, including when a task reading the reduced handle
is inserted through starpu_mpi_task_insert(). The previous example could avoid calling starpu_mpi_redux_data().
Default priority (0) is used. The reduction tree arity is decided based on the size of the data to reduce: a flat tree
is used with a small data (default to less than 1024 bytes), a binary tree otherwise. If the environment variable
STARPU_MPI_REDUX_ARITY_THRESHOLD is set, the threshold between the size of a small data and a bigger
data is modified. If the value is set to be negative, flat trees will always be used. If the value is set to 0, binary trees
are used. Otherwise, the size of the data is compared to the size in the environment variable. Remaining distributed-
memory reduction patterns are wrapped-up at the end of an application when calling starpu_mpi_wait_for_all().
More details about MPI reduction are show in Section MPIMpiRedux, and some examples for MPI data reduction

Generated by Doxygen

36 Data Management

are available in mpi/examples/mpi_redux/.

6.6 Concurrent Data Accesses

When several tasks are ready and will work on several data, StarPU is faced with the classical Dining Philosopher's
problem, and has to determine the order in which it will run the tasks.
Data accesses usually use sequential ordering, so data accesses are usually already serialized, and thus by default,
StarPU uses the Dijkstra solution which scales very well in terms of overhead: tasks will just acquire data one by
one by data handle pointer value order.
When sequential ordering is disabled or the flag STARPU_COMMUTE is used, there may be a lot of concurrent
accesses to the same data, and the Dijkstra solution gets only poor parallelism, typically in some pathological cases
which do happen in various applications, for instance
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
task[i][j] = starpu_task_build(&cl, STARPU_RW|STARPU_COMMUTE, A[i], STARPU_RW|STARPU_COMMUTE, B[j],

0);

It creates a series of tasks that are completely parallel in terms of tasks dependencies thanks to commutation,
but StarPU still has to prevent two tasks from operating on the same data. The Dijkstra solution here leads to a
worst-case: the task[0][j] tasks will wait for each other since they all access the same A[0]. And task[1][0] will
wait for task[0][0] because they both access the same B[0], task[1][1] will wait for task[0][1] because of B[1],
etc. In the end, no parallism is achieved:

In this case, one can use a data access arbiter starpu_arbiter_t, which implements the classical centralized solution
for the Dining Philosophers problem. One can call starpu_arbiter_create() to create a data access arbiter, and
starpu_data_assign_arbiter() to make access to handle managed by arbiter. Once the application no longer needs
the arbiter, one can call starpu_arbiter_destroy() to destroy the arbiter after all data assigned to the arbiter have
been unregistered. This is more expensive in terms of overhead since it is centralized, but it opportunistically gets a
lot of parallelism. The centralization can also be avoided by using several arbiters, thus separating sets of data for
which arbitration will be done. If a task accesses data from different arbiters, it will acquire them arbiter by arbiter,
in arbiter pointer value order.
See the tests/datawizard/test_arbiter.cpp example.
Arbiters however do not support the flag STARPU_REDUX yet.

6.7 Temporary Buffers

There are two kinds of temporary buffers: temporary data which just pass results from a task to another, and scratch
data which are needed only internally by tasks.

Generated by Doxygen

6.7 Temporary Buffers 37

6.7.1 Temporary Data

Data can be produced by a task, and consumed by another task, without being used by other parts of the application.
In such case, registration can be done without prior allocation, by using the special memory node number -1,
and passing a NULL pointer. StarPU will actually allocate memory only when the task creating the content gets
scheduled, and destroy it on unregistration.
As the application will not use the data, it can be tedious for the application to have to unregister it. The unregistration
can be done lazily by using the function starpu_data_unregister_submit(), which will record that no other tasks
accessing the handle will be submitted, so that it can be freed as soon as the last task accessing it is completed.
The following code examplifies both points: it registers the temporary data, submits three tasks accessing it, and
records the data for automatic unregistration.
starpu_vector_data_register(&handle, -1, NULL, n, sizeof(float));
starpu_task_insert(&produce_data, STARPU_W, handle, 0);
starpu_task_insert(&compute_data, STARPU_RW, handle, 0);
starpu_task_insert(&summarize_data, STARPU_R, handle, STARPU_W, result_handle, 0);
starpu_data_unregister_submit(handle);

The application may also want for the temporary data to be initialized on the fly before being used by the task.
This can be done by using starpu_data_set_reduction_methods() to set an initialization codelet (no redux codelet
is needed).

6.7.2 Scratch Data

Some kernels sometimes need temporary data to complete the computations, like a workspace. The application
could allocate it at the start of the codelet function, and free it at the end, but this would be costly. It could also
allocate one buffer per worker (similarly to HowToInitializeAComputationLibraryOnceForEachWorker), but this would
make them systematic and permanent. A more optimized way is to use the data access mode STARPU_SCRATCH,
as examplified below, which provides per-worker buffers without content consistency. The buffer is registered only
once, using memory node -1, i.e. the application didn't allocate memory for it, and StarPU will allocate it on demand
at task execution.
starpu_variable_data_register(&workspace, -1, NULL, sizeof(float));
for (i = 0; i < N; i++)

starpu_task_insert(&compute, STARPU_R, input[i], STARPU_SCRATCH, workspace, STARPU_W, output[i], 0);

StarPU will make sure that the buffer is allocated before executing the task, and make this allocation per-worker: for
CPU workers, notably, each worker has its own buffer. This means that each task submitted above will actually have
its own workspace, which will actually be the same for all tasks running one after the other on the same worker.
Also, if for instance memory becomes scarce, StarPU will notice that it can free such buffers easily, since the content
does not matter.
The example examples/pi uses scratches for some temporary buffer.
It may be useful to additionally use the STARPU_NOFOOTPRINT flag, when this buffer may have various size
depending e.g. on specific CUDA versions or devices, to make it simpler to use performance models for simulated
execution. See for instance examples/cholesky/cholesky_kernels.c

Generated by Doxygen

38 Data Management

Generated by Doxygen

Chapter 7

Scheduling

7.1 Task Scheduling Policies

The basics of the scheduling policy are the following:

• The scheduler gets to schedule tasks (push operation) when they become ready to be executed, i.e. they
are not waiting for some tags, data dependencies or task dependencies.

• Workers pull tasks (pop operation) one by one from the scheduler.

This means scheduling policies usually contain at least one queue of tasks to store them between the time when
they become available, and the time when a worker gets to grab them.
By default, StarPU uses the work-stealing scheduler lws. This is because it provides correct load balance and
locality even if the application codelets do not have performance models. Other non-modelling scheduling policies
can be selected among the list below, thanks to the environment variable STARPU_SCHED. For instance, export
STARPU_SCHED=dmda . Use help to get the list of available schedulers.
The function starpu_sched_get_predefined_policies() returns a NULL-terminated array of all predefined
scheduling policies that are available in StarPU. Functions starpu_sched_get_sched_policy_in_ctx() and
starpu_sched_get_sched_policy() return the scheduling policy of a task within a specific context or a default
context, respectively.

7.1.1 Non Performance Modelling Policies

• The eager scheduler uses a central task queue, from which all workers draw tasks to work on concurrently.
This however does not permit to prefetch data since the scheduling decision is taken late. If a task has a
non-0 priority, it is put at the front of the queue.

• The random scheduler uses a queue per worker, and distributes tasks randomly according to assumed
worker overall performance.

• The ws (work stealing) scheduler uses a queue per worker, and schedules a task on the worker which
released it by default. When a worker becomes idle, it steals a task from the most loaded worker.

• The lws (locality work stealing) scheduler uses a queue per worker, and schedules a task on the worker
which released it by default. When a worker becomes idle, it steals a task from neighbor workers. It also
takes priorities into account.

• The prio scheduler also uses a central task queue, but sorts tasks by priority specified by the application.

• The heteroprio scheduler uses different priorities for the different processing units. This scheduler must be
configured to work correctly and to expect high-performance as described in the corresponding section.

7.1.2 Performance Model-Based Task Scheduling Policies

If (and only if) your codelets have performance models (PerformanceModelExample), you should change the
scheduler thanks to the environment variable STARPU_SCHED, to select one of the policies below, in order to take

Generated by Doxygen

40 Scheduling

advantage of StarPU's performance modelling. For instance, export STARPU_SCHED=dmda . Use help to
get the list of available schedulers.
Note: Depending on the performance model type chosen, some preliminary calibration runs may be needed for the
model to converge. If the calibration has not been done, or is insufficient yet, or if no performance model is specified
for a codelet, every task built from this codelet will be scheduled using an eager fallback policy.
Troubleshooting: Configuring and recompiling StarPU using the configure option --enable-verbose displays
some statistics at the end of execution about the percentage of tasks which have been scheduled by a DM∗ family
policy using performance model hints. A low or zero percentage may be the sign that performance models are not
converging or that codelets do not have performance models enabled.

• The dm (deque model) scheduler takes task execution performance models into account to perform a HEFT-
similar scheduling strategy: it schedules tasks where their termination time will be minimal. The difference
with HEFT is that dm schedules tasks as soon as they become available, and thus in the order they become
available, without taking priorities into account.

• The dmda (deque model data aware) scheduler is similar to dm, but it also takes data transfer time into
account.

• The dmdap (deque model data aware prio) scheduler is similar to dmda, except that it sorts tasks by priority
order, which allows becoming even closer to HEFT by respecting priorities after having made the scheduling
decision (but it still schedules tasks in the order they become available).

• The dmdar (deque model data aware ready) scheduler is similar to dmda, but it also privileges tasks whose
data buffers are already available on the target device.

• The dmdas combines dmdap and dmdar: it sorts tasks by priority order, but for a given priority it will privilege
tasks whose data buffers are already available on the target device.

• The dmdasd (deque model data aware sorted decision) scheduler is similar to dmdas, except that when
scheduling a task, it takes into account its priority when computing the minimum completion time, since this
task may get executed before others, and thus the latter should be ignored.

• The heft (heterogeneous earliest finish time) scheduler is a deprecated alias for dmda.

• The pheft (parallel HEFT) scheduler is similar to dmda, it also supports parallel tasks (still experimental). It
should not be used when several contexts using it are being executed simultaneously.

• The peager (parallel eager) scheduler is similar to eager, it also supports parallel tasks (still experimental). It
should not be used when several contexts using it are being executed simultaneously.

7.1.3 Modularized Schedulers

StarPU provides a powerful way to implement schedulers, as documented in DefiningANewModularScheduling←↩

Policy. It is currently shipped with the following pre-defined Modularized Schedulers :

• modular-eager , modular-eager-prefetching are eager-based Schedulers (without and with prefetching),
they are naive schedulers, which try to map a task on the first available resource they find. The prefetching
variant queues several tasks in advance to be able to do data prefetching. This may however degrade load
balancing a bit.

• modular-prio, modular-prio-prefetching, modular-eager-prio are prio-based Schedulers (without / with
prefetching):, similar to Eager-Based Schedulers. They can handle tasks which have a defined priority and
schedule them accordingly. The modular-eager-prio variant integrates the eager and priority queue in a
single component. This allows it to do a better job at pushing tasks.

• modular-random, modular-random-prio, modular-random-prefetching, modular-random-prio-
prefetching are random-based Schedulers (without/with prefetching) : Select randomly a resource to
be mapped on for each task.

• modular-ws) implements Work Stealing: Maps tasks to workers in round-robin, but allows workers to steal
work from other workers.

Generated by Doxygen

7.2 Task Distribution Vs Data Transfer 41

• modular-heft, modular-heft2, and modular-heft-prio are HEFT Schedulers :
Maps tasks to workers using a heuristic very close to Heterogeneous Earliest Finish Time. It needs that every
task submitted to StarPU have a defined performance model (PerformanceModelCalibration) to work effi-
ciently, but can handle tasks without a performance model. modular-heft just takes tasks by order. modular-
heft2 takes at most 5 tasks of the same priority and checks which one fits best. modular-heft-prio is similar
to modular-heft, but only decides the memory node, not the exact worker, just pushing tasks to one central
queue per memory node. By default, they sort tasks by priorities and privilege, running first a task which has
most of its data already available on the target. These can however be changed with STARPU_SCHED_←↩

SORTED_ABOVE, STARPU_SCHED_SORTED_BELOW, and STARPU_SCHED_READY .

• modular-heteroprio is a Heteroprio Scheduler:
Maps tasks to worker similarly to HEFT, but first attribute accelerated tasks to GPUs, then not-so-accelerated
tasks to CPUs.

7.2 Task Distribution Vs Data Transfer

Distributing tasks to balance the load induces data transfer penalty. StarPU thus needs to find a balance between
both. The target function that the scheduler dmda of StarPU tries to minimize is alpha ∗ T_execution +
beta ∗ T_data_transfer, where T_execution is the estimated execution time of the codelet (usually
accurate), and T_data_transfer is the estimated data transfer time. The latter is estimated based on bus
calibration before execution start, i.e. with an idle machine, thus without contention. You can force bus re-calibration
by running the tool starpu_calibrate_bus. The beta parameter defaults to 1, but it can be worth trying to
tweak it by using export STARPU_SCHED_BETA=2 (STARPU_SCHED_BETA) for instance, since during real
application execution, contention makes transfer times bigger. This is of course imprecise, but in practice, a rough
estimation already gives the good results that a precise estimation would give.

Generated by Doxygen

42 Scheduling

Generated by Doxygen

Chapter 8

Examples in StarPU Sources

We have already seen some examples in Chapter Basic Examples. A tutorial is also installed in the directory
share/doc/starpu/tutorial/.
Many examples are also available in the StarPU sources in the directory examples/. Simple examples include:

incrementer/ Trivial incrementation test.

basic_examples/ Simple documented Hello world and vector/scalar product (as shown in Basic Examples),
matrix product examples (as shown in PerformanceModelExample), an example using the blocked matrix
data interface, an example using the variable data interface, and an example using different formats on CPUs
and GPUs.

matvecmult/ OpenCL example from NVidia, adapted to StarPU.

axpy/ AXPY CUBLAS operation adapted to StarPU.

native_fortran/ Example of using StarPU's native Fortran support.

fortran90/ Example of Fortran 90 bindings, using C marshalling wrappers.

fortran/ Example of Fortran 77 bindings, using C marshalling wrappers.

More advanced examples include:

filters/ Examples using filters, as shown in Partitioning Data.

lu/ LU matrix factorization, see for instance xlu_implicit.c

cholesky/ Cholesky matrix factorization, see for instance cholesky_implicit.c.

Generated by Doxygen

44 Examples in StarPU Sources

Generated by Doxygen

Part I

Appendix

Generated by Doxygen

Chapter 9

The GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright

2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document free in
the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of `‘copyleft’', which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
`‘Document’', below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as `‘you’'. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A `‘Modified Version’' of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A `‘Secondary Section’' is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The `‘Invariant Sections’' are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

Generated by Doxygen

http://fsf.org/

48 The GNU Free Documentation License

The `‘Cover Texts’' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A `‘Transparent’' copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not Transparent'' is calledOpaque''.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG,
XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The `‘Title Page’' means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, `‘Title Page’' means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

The `‘publisher’' means any person or entity that distributes copies of the Document to the public.

A section `‘Entitled XYZ’' means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as Acknowledgements'', Dedications'',
Endorsements'', orHistory''.) To `‘Preserve the Title’' of such a section when you modify the Docu-
ment means that it remains a section `‘Entitled XYZ’' according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, num-
bering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include
a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a

Generated by Doxygen

49

computer-network location from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

(a) Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document).
You may use the same title as a previous version if the original publisher of that version gives permission.

(b) List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this requirement.

(c) State on the Title page the name of the publisher of the Modified Version, as the publisher.

(d) Preserve all the copyright notices of the Document.

(e) Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

(f) Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

(g) Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

(h) Include an unaltered copy of this License.

(i) Preserve the section Entitled `‘History’', Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled `‘History’' in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

(j) Preserve the network location, if any, given in the Document for public access to a Transparent copy of
the Document, and likewise the network locations given in the Document for previous versions it was
based on. These may be placed in the `‘History’' section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

(k) For any section Entitled Acknowledgements'' orDedications'', Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

(l) Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

(m) Delete any section Entitled `‘Endorsements’'. Such a section may not be included in the Modified Ver-
sion.

(n) Do not retitle any existing section to be Entitled `‘Endorsements’' or to conflict in title with any Invariant
Section.

(o) Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

Generated by Doxygen

50 The GNU Free Documentation License

You may add a section Entitled `‘Endorsements’', provided it contains nothing but endorsements of your Mod-
ified Version by various parties—for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-←↩

Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity.
If the Document already includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled `‘History’' in the various original doc-
uments, forming one section Entitled History''; likewise combine any sections
EntitledAcknowledgements'', and any sections Entitled Dedications''. You must delete
all sections EntitledEndorsements.''

7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an `‘aggregate’' if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled Acknowledgements'', Dedications'', or `‘History’', the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

Generated by Doxygen

9.1 ADDENDUM: How to use this License for your documents 51

10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior
to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently rein-
stated, receipt of a copy of some or all of the same material does not give you any rights to use it.

11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a partic-
ular numbered version of this License `‘or any later version’' applies to it, you have the option of following the
terms and conditions either of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Docu-
ment specifies that a proxy can decide which future versions of this License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to choose that version for the Document.

12. RELICENSING

Massive Multiauthor Collaboration Site'' (orMMC Site'') means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an example of such a server. A Massive Multiauthor
Collaboration'' (orMMC'') contained in the site means any set of copyrightable works thus pub-
lished on the MMC site.

`‘CC-BY-SA’' means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Com-
mons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California,
as well as future copyleft versions of that license published by that same organization.

`‘Incorporate’' means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is `‘eligible for relicensing’' if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into
the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1,
2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site
at any time before August 1, 2009, provided the MMC is eligible for relicensing.

9.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (C) year your name. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled `‘GNU Free Documentation License’'.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the `‘with...Texts.’' line with this:

Generated by Doxygen

http://www.gnu.org/copyleft/

52 The GNU Free Documentation License

with the Invariant Sections being list their titles, with the Front-Cover Texts being list, and with the
Back-Cover Texts being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alter-
natives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

Generated by Doxygen

	1 Organization
	2 StarPU Applications
	2.1 Setting Flags for Compiling, Linking and Running Applications
	2.2 Integrating StarPU in a Build System
	2.2.1 Integrating StarPU in a Make Build System
	2.2.2 Integrating StarPU in a CMake Build System

	2.3 Running a Basic StarPU Application
	2.4 Running a Basic StarPU Application on Microsoft Visual C
	2.5 Kernel Threads Started by StarPU
	2.6 Enabling OpenCL
	2.7 Storing Performance Model Files

	3 Basic Examples
	3.1 Hello World
	3.1.1 Required Headers
	3.1.2 Defining A Codelet
	3.1.3 Submitting A Task
	3.1.4 Execution Of Hello World
	3.1.5 Passing Arguments To The Codelet
	3.1.6 Defining A Callback
	3.1.7 Where To Execute A Codelet

	3.2 Vector Scaling
	3.2.1 Source Code of Vector Scaling
	3.2.2 Execution of Vector Scaling

	3.3 Vector Scaling on an Hybrid CPU/GPU Machine
	3.3.1 Definition of the CUDA Kernel
	3.3.2 Definition of the OpenCL Kernel
	3.3.3 Definition of the Main Code
	3.3.4 Execution of Hybrid Vector Scaling

	4 Full Source Code for the ’Scaling a Vector’ Example
	4.1 Main Application
	4.2 CPU Kernel
	4.3 CUDA Kernel
	4.4 OpenCL Kernel
	4.4.1 Invoking the Kernel
	4.4.2 Source of the Kernel

	5 Tasks In StarPU
	5.1 Task Granularity
	5.2 Task Submission
	5.3 Task Priorities
	5.4 Setting Many Data Handles For a Task
	5.5 Setting a Variable Number Of Data Handles For a Task
	5.6 Insert Task Utility
	5.7 Other Task Utility Functions

	6 Data Management
	6.1 Data Interface
	6.1.1 Variable Data Interface
	6.1.2 Vector Data Interface
	6.1.3 Matrix Data Interface
	6.1.4 Block Data Interface
	6.1.5 Tensor Data Interface
	6.1.6 Ndim Data Interface
	6.1.7 BCSR Data Interface
	6.1.8 CSR Data Interface
	6.1.9 COO Data Interface

	6.2 Partitioning Data
	6.3 Asynchronous Partitioning
	6.4 Commute Data Access
	6.5 Data Reduction
	6.6 Concurrent Data Accesses
	6.7 Temporary Buffers
	6.7.1 Temporary Data
	6.7.2 Scratch Data

	7 Scheduling
	7.1 Task Scheduling Policies
	7.1.1 Non Performance Modelling Policies
	7.1.2 Performance Model-Based Task Scheduling Policies
	7.1.3 Modularized Schedulers

	7.2 Task Distribution Vs Data Transfer

	8 Examples in StarPU Sources
	I Appendix
	9 The GNU Free Documentation License
	9.1 ADDENDUM: How to use this License for your documents

