
StarPU Handbook - StarPU Language Bind-
ings

for StarPU 1.4.2

Generated by Doxygen.

i

1 Organization 3

2 Native Fortran Support 5

2.1 Implementation Details and Specificities . 5

2.1.1 Prerequisites . 5

2.1.2 Configuration . 5

2.1.3 Examples . 5

2.1.4 Compiling a Native Fortran Application . 5

2.2 Fortran Translation for Common StarPU API Idioms . 6

2.3 Uses, Initialization and Shutdown . 6

2.4 Fortran Flavor of StarPU's Variadic Insert_task . 7

2.5 Functions and Subroutines Expecting Data Structures Arguments 7

2.6 Additional Notes about the Native Fortran Support . 7

2.6.1 Using StarPU with Older Fortran Compilers . 7

2.6.2 Valid API Mixes and Language Mixes . 7

3 StarPU Java Interface 9

4 Python Interface 11

4.1 Installation of the Python Interface . 11

4.2 Python Parallelism . 11

4.3 Using StarPU in Python . 12

4.3.1 Submitting Tasks . 12

4.3.2 Returning Future Object . 12

4.3.3 Submit Python Objects Supporting The Buffer Protocol . 14

4.4 StarPU Data Interface for Python Objects . 17

4.4.1 Interface for Ordinary Python Objects . 17

4.4.2 Interface for Python Objects Supporting Buffer Protocol . 18

4.4.3 Interface for Empty Numpy Array . 20

4.4.4 Array Partitioning . 20

4.5 Benchmark . 22

4.6 Running Python Functions as Pipeline Jobs (Imitating Joblib Library) 24

4.6.1 Examples . 24

4.6.2 Parallel Parameters . 25

4.6.3 Performances . 26

4.7 Multiple Interpreters . 28

4.8 Master Slave Support . 31

5 The StarPU OpenMP Runtime Support (SORS) 33

5.1 Implementation Details and Specificities . 33

5.1.1 Main Thread . 33

5.1.2 Extended Task Semantics . 33

5.2 Configuration . 33

5.3 Initialization and Shutdown . 33

Generated by Doxygen

1

5.4 Parallel Regions and Worksharing . 34

5.4.1 Parallel Regions . 34

5.4.2 Parallel For . 34

5.4.3 Sections . 35

5.4.4 Single . 35

5.5 Tasks . 36

5.5.1 Explicit Tasks . 36

5.5.2 Data Dependencies . 37

5.5.3 TaskWait and TaskGroup . 37

5.6 Synchronization Support . 38

5.6.1 Simple Locks . 38

5.6.2 Nestable Locks . 38

5.6.3 Critical Sections . 38

5.6.4 Barriers . 39

5.7 Example: An OpenMP LLVM Support . 39

5.8 OpenMP Standard Functions in StarPU . 39

I Appendix 41

6 The GNU Free Documentation License 43

6.1 ADDENDUM: How to use this License for your documents . 47

Generated by Doxygen

2

This manual documents the usage of StarPU version 1.4.2. Its contents was last updated on 2023-11-23.

Copyright © 2009-2023 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

Generated by Doxygen

Chapter 1

Organization

This part shows how StarPU which is natively written in C, has been extended to allow applications written in other
languages to use it.

• You can learn to natively access most of StarPU functionalities from Fortran 2008+ codes with some expla-
nations and examples in Chapter The StarPU Native Fortran Support.

• You can find out how to execute Java applications with some important StarPU APIs in Chapter
StarPU Java Interface.

• Python interface supports most of the main StarPU functionalities, and new functions especially adapted to
Python have been added as well. There are detailed explanations and examples in Chapter Python Interface.

• You can learn how to execute OpenMP tasks with some specific functions in Chapter The StarPU OpenMP Runtime Support (SORS).

Generated by Doxygen

4 Organization

Generated by Doxygen

Chapter 2

Native Fortran Support

StarPU provides the necessary routines and support to natively access most of its functionalities from Fortran 2008+
codes.
All symbols (functions, constants) are defined in fstarpu_mod.f90. Every symbol of the Native Fortran support
API is prefixed by fstarpu_.
Note: Mixing uses of fstarpu_ and starpu_ symbols in the same Fortran code has unspecified behavior. See
Valid API Mixes and Language Mixes for a discussion about valid and unspecified combinations.

2.1 Implementation Details and Specificities

2.1.1 Prerequisites

The Native Fortran support relies on Fortran 2008 specific constructs, as well as on the support for interoperability
of assumed-shape arrays introduced as part of Fortran's Technical Specification ISO/IEC TS 29113:2012, for which
no equivalent are available in previous versions of the standard. It has currently been tested successfully with GNU
GFortran 4.9, GFortran 5.x, GFortran 6.x and the Intel Fortran Compiler >= 2016. It is known not to work with GNU
GFortran < 4.9, Intel Fortran Compiler < 2016.
See Section Using StarPU with Older Fortran Compilers for information on how to write StarPU Fortran code with
older compilers.

2.1.2 Configuration

The Native Fortran API is enabled and its companion fstarpu_mod.f90 Fortran module source file is installed
by default when a Fortran compiler is found, unless the detected Fortran compiler is known not to support the
requirements for the Native Fortran API. The support can be disabled through the configure option --disable-
fortran. Conditional compiled source codes may check for the availability of the Native Fortran Support by testing
whether the preprocessor macro STARPU_HAVE_FC is defined or not.

2.1.3 Examples

Several examples using the Native Fortran API are provided in StarPU's examples/native_fortran/ ex-
amples directory, to showcase the Fortran flavor of various basic and more advanced StarPU features.

2.1.4 Compiling a Native Fortran Application

The Fortran module fstarpu_mod.f90 installed in StarPU's include/ directory provides all the necessary
API definitions. It must be compiled with the same compiler (same vendor, same version) as the application itself,
and the resulting fstarpu_mod.o object file must be linked with the application executable.
Each example provided in StarPU's examples/native_fortran/ examples directory comes with its own
dedicated Makefile for out-of-tree build. Such example Makefiles may be used as starting points for building appli-
cation codes with StarPU.

Generated by Doxygen

6 Native Fortran Support

2.2 Fortran Translation for Common StarPU API Idioms

All these examples assume that the standard Fortran module iso_c_binding is in use.

• Specifying a NULL pointer
type(c_ptr) :: my_ptr ! variable to store the pointer
! [...]
my_ptr = c_null_ptr ! assign standard constant for null ptr

• Obtaining a pointer to some object:
real(8), dimension(:), allocatable, target :: va
type(c_ptr) :: p_va ! variable to store a pointer to array va
! [...]
p_va = c_loc(va)

• Obtaining a pointer to some subroutine:
! pointed routine definition
recursive subroutine myfunc () bind(C)
! [...]
type(c_funptr) :: p_fun ! variable to store the routine pointer
! [...]
p_fun = c_funloc(my_func)

• Obtaining the size of some object:
real(8) :: a
integer(c_size_t) :: sz_a ! variable to store the size of a
! [...]
sz_a = c_sizeof(a)

• Obtaining the length of an array dimension:
real(8), dimension(:,:), allocatable, target :: vb
integer(c_int) :: ln_vb_1 ! variable to store the length of vb’s dimension 1
integer(c_int) :: ln_vb_2 ! variable to store the length of vb’s dimension 2
! [...]
ln_vb_1 = 1+ubound(vb,1)-lbound(vb,1) ! get length of dimension 1 of vb
ln_vb_2 = 1+ubound(vb,2)-lbound(vb,2) ! get length of dimension 2 of vb

• Specifying a string constant:
type(c_ptr) :: my_cl ! a StarPU codelet
! [...]
! set the name of a codelet to string ’my_codele’t:
call fstarpu_codelet_set_name(my_cl, c_char_"my_codelet"//c_null_char)
! note: using the C_CHAR_ prefix and the //C_NULL_CHAR concatenation at the end ensures
! that the string constant is properly ’\0’ terminated, and compatible with StarPU’s
! internal C routines
!
! note: plain Fortran string constants are not ’\0’ terminated, and as such, must not be
! passed to starpu routines.

• Combining multiple flag constants with a bitwise 'or':
type(c_ptr) :: my_cl ! a pointer for the codelet structure
! [...]
! add a managed buffer to a codelet, specifying both the Read/Write access mode and the Locality hint
call fstarpu_codelet_add_buffer(my_cl, fstarpu_rw.ior.fstarpu_locality)

A basic example is available in examples/native_fortran/nf_vector_scal.f90.

2.3 Uses, Initialization and Shutdown

The snippet below show an example of minimal StarPU code using the Native Fortran support. The program should
use the standard module iso_c_binding as well as StarPU's fstarpu_mod. The StarPU runtime engine
is initialized with a call to function fstarpu_init, which returns an integer status of 0 if successful or non-0
otherwise. Eventually, a call to fstarpu_shutdown ends the runtime engine and frees all internal StarPU data
structures.
program nf_initexit

use iso_c_binding ! C interfacing module
use fstarpu_mod ! StarPU interfacing module
implicit none ! Fortran recommended best practice
integer(c_int) :: err ! return status for fstarpu_init
! initialize StarPU with default settings
err = fstarpu_init(c_null_ptr)
if (err /= 0) then

stop 1 ! StarPU initialization failure
end if

! - add StarPU Native Fortran API calls here
! shut StarPU down
call fstarpu_shutdown()

end program nf_initexit

Generated by Doxygen

2.4 Fortran Flavor of StarPU's Variadic Insert_task 7

2.4 Fortran Flavor of StarPU's Variadic Insert_task

Fortran does not have a construction similar to C variadic functions, on which starpu_task_insert() relies at the
time of this writing. However, Fortran's variable length arrays of c_ptr elements enable to emulate much of the
convenience of C's variadic functions. This is the approach retained for implementing fstarpu_task_insert.
The general syntax for using fstarpu_task_insert is as follows:
call fstarpu_task_insert((/ <codelet ptr> &

[, <access mode flags>, <data handle>]* &
[, <argument type constant>, <argument>]* &
, c_null_ptr /))

There is thus a unique array argument (/ ... /) passed to fstarpu_task_insert which itself contains
the task settings. Each element of the array must be of type type(c_ptr). The last element of the array must
be C_NULL_PTR.
Example extracted from nf_vector.f90:
call fstarpu_task_insert((/ cl_vec, & ! codelet

fstarpu_r, dh_va, & ! a first data handle
fstarpu_rw.ior.fstarpu_locality, dh_vb, & ! a second data handle
c_null_ptr /)) ! no more args

The full example is available in examples/native_fortran/nf_vector.f90.

2.5 Functions and Subroutines Expecting Data Structures Arguments

Several StarPU structures that are expected to be passed to the C API, are replaced by function/subroutine wrapper
sets to allocate, set fields and free such structure. This strategy has been preferred over defining native Fortran
equivalent of such structures using Fortran's derived types, to avoid potential layout mismatch between C and
Fortran StarPU data structures. Examples of such data structures wrappers include fstarpu_conf_allocate
and alike, fstarpu_codelet_allocate and alike, fstarpu_data_filter_allocate and alike.
Here is an example of allocating, filling and deallocating a codelet structure:
! a pointer for the codelet structure
type(c_ptr) :: cl_vec
! [...]
! allocate an empty codelet structure
cl_vec = fstarpu_codelet_allocate()
! add a CPU implementation function to the codelet
call fstarpu_codelet_add_cpu_func(cl_vec, c_funloc(cl_cpu_func_vec))
! add a CUDA implementation function to the codelet
call fstarpu_codelet_add_cuda_func(cl_vec, c_funloc(cl_cuda_func_vec))
! set the codelet name
call fstarpu_codelet_set_name(cl_vec, c_char_"my_vec_codelet"//c_null_char)
! add a Read-only mode data buffer to the codelet
call fstarpu_codelet_add_buffer(cl_vec, fstarpu_r)
! add a Read-Write mode data buffer to the codelet
call fstarpu_codelet_add_buffer(cl_vec, fstarpu_rw.ior.fstarpu_locality)
! [...]
! free codelet structure
call fstarpu_codelet_free(cl_vec)

The full example is available in examples/native_fortran/nf_vector.f90.

2.6 Additional Notes about the Native Fortran Support

2.6.1 Using StarPU with Older Fortran Compilers

When using older compilers, Fortran applications may still interoperate with StarPU using C marshalling functions
as examplified in StarPU's examples/fortran/ and examples/fortran90/ example directories, though
the process will be less convenient.
Basically, the main FORTRAN code calls some C wrapper functions to submit tasks to StarPU. Then, when StarPU
starts a task, another C wrapper function calls the FORTRAN routine for the task.
Note that this marshalled FORTRAN support remains available even when specifying configure option --disable-
fortran (which only disables StarPU's native Fortran layer).

2.6.2 Valid API Mixes and Language Mixes

Mixing uses of fstarpu_ and starpu_ symbols in the same Fortran code has unspecified behavior. Using
fstarpu_ symbols in C code has unspecified behavior.
For multi-language applications using both C and Fortran source files:

Generated by Doxygen

8 Native Fortran Support

• C source files must use starpu_ symbols exclusively

• Fortran sources must uniformly use either fstarpu_ symbols exclusively, or starpu_ symbols exclusively.
Every other combination has unspecified behavior.

Generated by Doxygen

Chapter 3

StarPU Java Interface

The StarPU Java Interface provides the ability to execute Java applications on top of StarPU.
The interface allows to write either StarPU-like applications
package fr.labri.hpccloud.starpu.examples;
import fr.labri.hpccloud.starpu.Codelet;
import fr.labri.hpccloud.starpu.StarPU;
import fr.labri.hpccloud.starpu.data.DataHandle;
import fr.labri.hpccloud.starpu.data.IntegerVariableHandle;
import fr.labri.hpccloud.starpu.data.VectorHandle;
import java.util.Random;
import static fr.labri.hpccloud.starpu.data.DataHandle.AccessMode.*;
public class VectorScal
{

public static final int NX = 10;
public static final Float factor = 3.14f;
static final Codelet scal = new Codelet()
{

@Override
public void run(DataHandle[] buffers)
{

VectorHandle<Float> array = (VectorHandle<Float>)buffers[0];
int n = array.getSize();
System.out.println(String.format("scaling array %s with %d elements", array, n));
for (int i = 0; i < n; i++)
{

array.setValueAt(i, factor * array.getValueAt(i));
}

}
@Override
public DataHandle.AccessMode[] getAccessModes()
{

return new DataHandle.AccessMode[]
{

STARPU_RW
};

}
};
public static void main(String[] args) throws Exception
{

int nx = (args.length == 0) ? NX : Integer.valueOf(args[0]);
compute(nx);

}
public static void compute(int nx) throws Exception
{

StarPU.init();
System.out.println(String.format("VECTOR[#nx=%d]", nx));
VectorHandle<Float> arrayHandle = VectorHandle.register(nx);
System.out.println(String.format("scaling array %s", arrayHandle));
for(int i=0 ; i<nx ; i++)
{

arrayHandle.setValueAt(i, i+1.0f);
}
StarPU.submitTask(scal, false, arrayHandle);
arrayHandle.acquire();
for(int i=0 ; i<nx ; i++)
{

System.out.println(String.format("v[%d] = %f", i, arrayHandle.getValueAt(i)));
}
arrayHandle.release();
arrayHandle.unregister();
StarPU.shutdown();

}
}

or Spark applications.
package fr.labri.hpccloud.starpu.examples;

Generated by Doxygen

10 StarPU Java Interface

import fr.labri.hpccloud.starpu.StarPU;
import fr.labri.hpccloud.starpu.data.DataPairSet;
import fr.labri.hpccloud.starpu.data.DataSet;
import fr.labri.hpccloud.starpu.data.Tuple2;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;
import java.util.Arrays;
import java.util.regex.Pattern;
public class WordCount
{

static InputStream openFile(String filename) throws Exception
{

return WordCount.class.getResourceAsStream(filename);
}
private static final Pattern SPACE = Pattern.compile(" ");
public static void main(String[] args) throws Exception
{

InputStream input = new FileInputStream(args[0]);
StarPU.init();
compute(input);
input.close();
StarPU.shutdown();

}
private static void compute(InputStream input) throws Exception
{

DataSet<String> lines = DataSet.readFile (input, s->s).splitByBlocks(10);
DataSet<String> words = lines.flatMap(s ->

Arrays.asList(SPACE.split(s)).iterator()).splitByBlocks(10);
DataPairSet<String,Integer> ones = (DataPairSet<String,Integer>)words.mapToPair(w-> new

Tuple2<>(w,1));
DataPairSet<String,Integer> counts = ones.reduceByKey((c1,c2)-> c1 + c2);
for(Tuple2<String,Integer> p : counts.collect())
{

System.out.println("("+p._1()+","+p._2()+")");
}

}
}

The installation process is not yet included in the StarPU autotools mechanism. However, a file INSTALL.org is
provided in the starpujni directory to explain how to proceed with the installation, and shows how to run some
basic examples.
hadoop needs to be installed before running the installation process.

Generated by Doxygen

Chapter 4

Python Interface

This chapter presents the StarPU Python Interface. It provides for those used to the Python language a more
concise and easy-to-use StarPU interface.
This interface supports most of the main StarPU functionalities. While not all features of the C API are replicated in
the Python Interface, additional functions tailored for Python's ease of use have been incorporated.
Several examples using the Python API are provided in the directory starpupy/examples/.

4.1 Installation of the Python Interface

The python modules joblib and cloudpickle are mandatory and should be installed before calling
configure. The python module numpy is recommended, but not mandatory.
If all requirements are met, calling configure will enable by default the Python Interface. You can also specify
the option --enable-starpupy which will fail if some requirements are missing.

$ pip3 install joblib
$ pip3 install cloudpickle
$ pip3 install numpy
$../configure --enable-starpupy --enable-blocking-drivers --prefix=$HOME/usr/starpu
$ make
$ make install

You can then go to the directory in which StarPU is installed, and test the provided Python examples.

$ cd $HOME/usr/starpu
$. ./bin/starpu_env
Setting StarPU environment for ...
$ cd lib/starpu/python
$ python3 starpu_py.py
Example 1:
Hello, world!
...
$

4.2 Python Parallelism

Python interpreters share the Global Interpreter Lock (GIL), which requires that at any time, one and only one
thread has the right to execute a task. With Python versions up to 3.11, if the application is pure Python script, even
with multi-interpreters, the program cannot be executed in parallel. The sharedGIL makes the multiple interpreters
execution of Python actually serial rather than parallel, and the execution of Python program is single-threaded
essentially.
For the pure Python script with python versions up to 3.11, the only way to achieve parallelism is to use the master-
slave mechanism (Section Master Slave Support). Parallelism may be implemented with multi-interpreters in the
future Python version. Details can be found in Section Multiple Interpreters. Otherwise parallelism can be achieved
when external C applications are called or external APIs e.g. BLAS API is used for Numpy objects.
Starting from python version 3.12, multiple interpreters can use a separate GIL, to allow parallelism of pure python
code. This can be enabled by setting STARPUPY_OWN_GIL to 1. Some corner cases are however not supported
yet in python 3.12, notably the usage of futures.

Generated by Doxygen

12 Python Interface

4.3 Using StarPU in Python

The StarPU module should be imported in any Python code wanting to use the StarPU Python interface.
import starpu

Before using any StarPU functionality, it is necessary to call starpu.init(). The function starpu.←↩

shutdown() should be called after all StarPU functions have been called.
import starpu
starpu.init()
...
starpu.shutdown()

4.3.1 Submitting Tasks

One of the fundamental aspects of StarPU is the task submission. The Python Interface greatly simplifies this
process, allowing for direct calls to the submission function without any extra complexities.
The Python function used for task submission follows the format: task_submit(options)(func, ∗args,
∗∗kwargs). In this structure:

• func represents any Python function.

• args and kwargs denote the function's arguments.

You can also provide the function as a string.
By submitting tasks through this function, you enable StarPU to perform optimizations for your program's execution.
It's recommended to submit all tasks to ensure StarPU's efficient scheduling of the underlying tasks. It's important
to note that submitted tasks do not execute immediately, and you can retrieve the return value only after the task
execution.
The first set of parentheses allows to specify various options. Keep in mind that each option has a default value,
and even if you're not providing any options, the parentheses should be retained. The options are as follows:

• name (string, default: None) : Set the name of the task. This can be useful for debugging purposes.

• synchronous (unsigned, default: 0) : If this flag is set, task_submit() only returns when the task
has been executed (or if no worker is able to process the task). Otherwise, task_submit() returns
immediately.

• priority (int, default: 0) : Set the level of priority for the task. This is an integer value whose value
must be greater than the return value of the function starpu.sched_get_min_priority() (for the
least important tasks), and lower or equal to the return value of the function starpu.sched_get_max←↩

_priority() (for the most important tasks). Default priority is defined as 0 in order to allow static task
initialization. Scheduling strategies that take priorities into account can use this parameter to take better
scheduling decisions, but the scheduling policy may also ignore it.

• color (unsigned, default: None) : Set the color of the task to be used in dag.dot.

• flops (double, default: None) : Set the number of floating points operations that the task will have to
achieve. This is useful for easily getting GFlops/s curves from the function starpu.perfmodel_plot,
and for the hypervisor load balancing.

• perfmodel (string, default: None) : Set the name of the performance model. This name will be used
as the filename where the performance model information will be saved. After the task is executed, one can
call the function starpu.perfmodel_plot() by giving the symbol of perfmodel to view its performance
curve.

4.3.2 Returning Future Object

In order to realize asynchronous frameworks, the task_submit() function returns a Future object. This is
an extended use of StarPU provided by the Python interface. A Future represents an eventual result of an
asynchronous operation. It is an awaitable object, Coroutines can await on Future objects until they either
have a result or an exception set, or until they are canceled. Some basic examples are available in the script
starpupy/examples/starpu_py.py.
This feature needs the asyncio module to be imported.
import starpu
import asyncio

Generated by Doxygen

4.3 Using StarPU in Python 13

starpu.init()
def add(a, b):

return a+b
async def main():

fut = starpu.task_submit()(add, 1, 2)
res = await fut
print("The result of function is", res)

asyncio.run(main())
starpu.shutdown()

Execution:

The result of function is 3

When using at least the version 3.8 of python, one can also use the parameter -m asyncio which allows to
directly use await instead of asyncio.run().

$ python3 -m asyncio
>>> import asyncio

import starpu
starpu.init()
def add(a, b):

print("The result is ready!")
return a+b

fut = starpu.task_submit()(add, 1, 2)

The result is ready!

res = await fut
res

3

You can also use the decorator starpu.delayed to wrap a function. The function can then directly be submitted
to StarPU and will automatically create a Future object.
@starpu.delayed
def add_deco(a, b):

print("The result is ready!")
return a+b

fut = add_deco(1, 2)

The result is ready!

res = await fut
res

3

To specify options when using the decorator, just do as follows:
@starpu.delayed(name="add", color=2, perfmodel="add_deco")
def add_deco(a, b):

print("The result is ready!")
return a+b

fut = add_deco(1, 2)

The result is ready!

res = await fut
res

3

A Future object can also be used for the next step calculation even before being ready. The calculation will be
postponed until the Future has a result.
In this example, after submitting the first task, a Future object fut1 is created, and it is used as an argument of a
second task. The second task is submitted even without having the return value of the first task.
import asyncio
import starpu
import time
starpu.init()
def add(a, b):

time.sleep(10)
print("The first result is ready!")
return a+b

def sub(x, a):
print("The second result is ready!")
return x-a

fut1 = starpu.task_submit()(add, 1, 2)
fut2 = starpu.task_submit()(sub, fut1, 1)

The first result is ready!
The second result is ready!

res = await fut2
res

2

Generated by Doxygen

14 Python Interface

4.3.3 Submit Python Objects Supporting The Buffer Protocol

The Python buffer protocol is a framework in which Python objects can expose raw byte arrays to other Python
objects. This can be extremely useful to efficiently store and manipulate large arrays of data. The StarPU Python
Interface allows users to use such objects as task parameters.
import asyncio
import starpu
import time
import numpy as np
starpu.init()
def add(a,b):

c = np.zeros(np.size(a))
for i in range(np.size(a)):

c[i] = a[i] + b[i]
return c

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
fut = starpu.task_submit()(add, a, b)
res = await fut
res

array([5., 7., 9.])

StarPU uses a specific data interface to handle Python objects supporting buffer protocol, such python objects are
then managed by the StarPU data management library which allows minimizing data transfers between accelerators,
and avoids copying the object each time.
We show the performances below of the numpy addition (numpy.add running the script test_perf.sh) with
different array sizes (10, 20, ..., 100, 200, ..., 1000, 2000, ..., 10000, 20000, ..., 100000, 200000, ..., 1000000,
2000000, ..., 10000000, ..., 50000000). We compare two cases:

1. Using StarPU,

2. Without using StarPU tasks, but directly calling the numpy.add function.

The first plot compares the task submission time when using StarPU and the program execution time without using
StarPU. We can see that there is an obvious optimization using StarPU when the test array size is large. The task
has not finished its execution yet as shown in second figure, the time can be used to perform other operations.

We can also define our own function to do the numpy operation, e.g. the element addition:
def add(a, b):

for i in range(np.size(a)):
a[i] = a[i] + b[i]

We will compare operation performances with the same two cases, but based on our custom function add(a, b).
We can see that the custom function is not as efficient as the numpy function overall. The optimization for large
arrays is the same when using StarPU.

Generated by Doxygen

4.3 Using StarPU in Python 15

4.3.3.1 Access Mode Annotation

StarPU defines different access modes for a data, it can be readable (access mode is R), writable (access mode is
W), or both readable and writable (access mode is RW). The default access mode is R.
For the Python interface, these modes can be defined as shown below.

1. Using the decorator starpu.access(arg="R/W/RW") to wrap the function.
a = np.array([1, 2, 3, 4, 5, 6])
e = np.array([0, 0, 0, 0, 0, 0, 0])
@starpu.access(a="R", b="W")
def assign(a,b):

for i in range(min(np.size(a), np.size(b))):
b[i]=a[i]

fut = starpu.task_submit()(assign, a, e)
starpu.acquire(e)

array([1, 2, 3, 4, 5, 6, 0])

starpu.release(e)

2. Using the decorator starpu.delayed(options, arg="R/W/RW").
@starpu.delayed(a="R", b="W")
def assign(a,b):

for i in range(min(np.size(a), np.size(b))):
b[i]=a[i]

fut = assign(a, e)
starpu.acquire(e)

array([1, 2, 3, 4, 5, 6, 0])

starpu.release(e)

3. Using the method starpu.set_access(func, arg="R/W/RW") that will create a new function.
def assign(a,b):

for i in range(min(np.size(a), np.size(b))):
b[i]=a[i]

assign_access=starpu.set_access(assign, a="R", b="W")
fut = starpu.task_submit()(assign_access, a, e)
starpu.acquire(e)

array([1, 2, 3, 4, 5, 6, 0])

starpu.release(e)

4.3.3.2 Methods

Once the access mode of one argument is set to at least W, it may be modified during the task execution. We should
pay attention that before the task is finished, we cannot get the up-to-date value of this argument by simply using
print function. For example:

Generated by Doxygen

16 Python Interface

import asyncio
import starpu
import time
import numpy as np
starpu.init()
a = np.array([1, 2, 3, 4, 5, 6])
e = np.array([0, 0, 0, 0, 0, 0, 0])
@starpu.access(a="R", b="W")
def assign(a,b):

time.sleep(10)
for i in range(min(np.size(a), np.size(b))):

b[i]=a[i]
fut = starpu.task_submit()(assign, a, e)
print(e) # before the task is finished

[0 0 0 0 0 0 0]

We print argument e right after submitting the task, but since the task is not finished yet, we can only get its
unchanged value. If we want to get its up-to-date value, we need extra functions.
In order to access data registered to StarPU outside tasks, we provide an acquire and release mechanism.

• The starpu.acquire(data, mode) method should be called to access registered data outside tasks
(Refer to the C API starpu_data_acquire()). StarPU will ensure that the application will get an up-to-date copy
of handle in main memory located where the data was originally registered, and that all concurrent accesses
(e.g. from tasks) will be consistent with the access mode specified with the given mode (R the default mode,
W or RW).

• The starpu.release(data) method must be called once the application no longer needs to access
the piece of data (Refer to the C API starpu_data_release()).

• The starpu.unregister(data) method must be called to unregister the Python object from StarPU.
(Refer to the C API starpu_data_unregister()). This method waits for all calculations to be finished before
unregistering data.

With acquire, even we ask to access the argument right after submitting the task, the up-to-date value will be
printed once the task is finished.
starpu.acquire(e) # before the task is finished

array([1, 2, 3, 4, 5, 6, 0])

In order to complete the addition operation example, execution steps are:
import asyncio
import starpu
import time
import numpy as np
starpu.init()
@starpu.access(a="RW", b="R")
def add(a,b):

time.sleep(10)
for i in range(np.size(a)):

a[i] = a[i] + b[i]
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
starpu.acquire(a, mode="R")

array([1, 2, 3])

starpu.release(a)
fut = starpu.task_submit()(add, a, b)
starpu.acquire(b, mode="R")

array([4, 5, 6])

starpu.acquire(a, mode="R") # before the task is finished

array([5, 7, 9])

starpu.release(a)
starpu.release(b)
starpu.unregister(a)
starpu.unregister(b)

The result of b is printed directly right after calling acquire, but the up-to-date value of a is printed after the task
is finished. Here we need to pay attention that if we want to modify an argument during the task execution and get
its up-to-date value for the future operation, we should set the access mode of this argument to at least W, otherwise

Generated by Doxygen

4.4 StarPU Data Interface for Python Objects 17

this argument object is not synchronous, and the next task which needs this object will not wait its up-to-date value
to execute.
If we call acquire but not release before the task submission, the task will not start to execute until the object
is released.
An example is shown below:
import asyncio
import starpu
import numpy as np
import time
starpu.init()
@starpu.access(a="RW")
def add(a,b):

print("This is the addition function")
time.sleep(10)
for i in range(np.size(a)):

a[i] = a[i] + b[i]
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
starpu.acquire(a, mode="R")

array([1, 2, 3])

fut = starpu.task_submit()(add, a, b)
starpu.release(a)

This is the addition function # The task will not start until "a" is released

starpu.acquire(a, mode="R") # Before the task is finished

array([5, 7, 9]) # After the task is finished

starpu.release(a)
starpu.unregister(a)
starpu.unregister(b)

4.4 StarPU Data Interface for Python Objects

StarPU uses data handles to manage a piece of data. A data handle keeps track of replicates of the same data
(registered by the application) over various memory nodes. The data management library manages to keep them
coherent. That also allows minimizing the data transfers, and avoids copying the object each time. Data handles
are managed through specific data interfaces. Some examples applying this specific interface are available in script
starpupy/examples/starpu_py_handle.py.

4.4.1 Interface for Ordinary Python Objects

A specific data interface has been defined to manage Python objects, such as constant (integer, float...), string, list,
etc. This interface is defined with the class Handle. When submitting a task, instead of specifying a function and
its arguments, we specify a function and the handles of its arguments.
In addition to returning a Future object, it is also possible to return a StarPU handle object when submitting a
function. To do so, you need to set the starpu.task_submit option ret_handle to True, its default value
is False.
import starpu
from starpu import Handle
starpu.init()
def add(x, y):

return x + y
x = Handle(2)
y = Handle(3)
res = starpu.task_submit(ret_handle=True)(add, x, y)

We then need to call the method get() to get the latest version of this Python Object.
res.get()

5

When not setting the parameter ret_handle, the return object is a Future.
res_fut = starpu.task_submit()(add, x, y)
await res_fut

If the Python object is immutable (such as int, float, str, tuple...), registering the same object several times is
authorised. That means you can do this:
x = Handle(2)
x1 = Handle(2)

x and x1 are two different Handle objects.

Generated by Doxygen

18 Python Interface

4.4.2 Interface for Python Objects Supporting Buffer Protocol

This StarPU data interface can also be used to manage Python objects supporting buffer protocol, i.e numpy array,
bytes, bytearray, array.array and memoryview object.
import numpy as np
import starpu
from starpu import Handle
starpu.init()
def add(a,b):

for i in range(np.size(a)):
a[i] = a[i] + b[i]

return a
a = np.array([1, 2, 3])
b = np.array([2, 4, 6])
a_h = Handle(a)
b_h = Handle(b)
res = starpu.task_submit(ret_handle=True)(add, a_h, b_h)
res.get()

array([3, 6, 9])

Different from immutable Python object, all Python objects supporting buffer protocol are mutable, and registering
the same object one more time is not authorized. If you do this:
a = np.array([1, 2, 3])
a_h = Handle(a)
a1_h = Handle(a)

You will get an error message:

starpupy.error: Should not register the same mutable python object once more.

You may refer to Section Submit Python Objects Supporting The Buffer Protocol, and realize that StarPU Python
interface uses data handles to manage Python objects supporting buffer protocol by default. These objects are
usually relatively large, such as a big NumPy matrix. We want to avoid multiple copies and transfers of this data
over various memory nodes, so we set the default starpu.task_submit() option arg_handle to True for
users to allow their applications to get the most optimization. To deactivate the use of this data interface, you need
to set the option arg_handle to False.
Since we use data handles by default, registration is implemented in the step of task submission. Therefore, you
should be careful not to register again the same object after the task submission, like this:
a = np.array([1, 2, 3])
b = np.array([2, 4, 6])
res = starpu.task_submit(ret_handle=True)(add, a, b)
a_h = Handle(a)

You will get the error message:

starpupy.error: Should not register the same mutable python object once more.

As performances, we showed in Section Submit Python Objects Supporting The Buffer Protocol, we add one case
to compare with the others two cases. We still test the numpy addition (numpy.add running the script test_←↩

handle_perf.sh) with different array sizes (10, 20, ..., 100, 200, ..., 1000, 2000, ..., 10000, 20000, ..., 100000,
200000, ..., 1000000, 2000000, ..., 10000000, ..., 50000000). Three cases are:

1. Using StarPU and returning future object,

2. Using StarPU and returning handle object,

3. Without using StarPU tasks, but directly calling the numpy.add function.

The first plot compares the task submission time when using StarPU either returning a Future or a handle object and
the program execution time without using StarPU. We can see that there is an obvious optimization using StarPU,
either returning a Future or a handle object when the test array size is large. The task has not finished its execution
yet as shown in second figure, the time can be used to perform other operations. When array size is not very large,
returning a handle has a better execution performance than returning a Future.

Generated by Doxygen

4.4 StarPU Data Interface for Python Objects 19

We can also define our own function to do the numpy operation, e.g. the element addition:
def add(a, b):

for i in range(np.size(a)):
a[i] = a[i] + b[i]

We will compare operation performances with the same three cases but based on our custom function add(a,
b).
We can see that the custom function is not as efficient as the numpy function overall. The optimisation for large
arrays is the same when using StarPU.

4.4.2.1 Methods

As in Section Methods, the Handle class defines methods to provide an acquire and release mechanism.

• The method Handle::acquire(mode) should be called before accessing the object outside tasks (Re-
fer to the C API starpu_data_acquire()). The access mode can be "R", "W", "RW", the default value is "R".
We will get an up-to-date copy of Python object by calling this method.

Generated by Doxygen

20 Python Interface

• The method Handle::release() must be called once the application no longer needs to access the
registered data (Refer to the C API starpu_data_release()).

• The method Handle::unregister() to unregister the Python object handle from StarPU (Refer to the
C API starpu_data_unregister()). This method will wait for all calculations to be finished before unregistering
data.

The previous example can be coded as follows:
import numpy as np
import starpu
from starpu import Handle
starpu.init()
@starpu.access(a="RW", b="R")
def add(a,b):

for i in range(np.size(a)):
a[i] = a[i] + b[i]

a = np.array([1, 2, 3])
b = np.array([2, 4, 6])
a_h = Handle(a)
b_h = Handle(b)
a_h.acquire(mode = "R")
array([1, 2, 3])
a_h.release()
starpu.task_submit(ret_handle=True)(add, a_h, b_h)
a_h.acquire(mode = "R") # we get the up-to-date value

array([3, 6, 9])

a_h.release()
a_h.unregister()

4.4.3 Interface for Empty Numpy Array

We can register an empty numpy array by calling HandleNumpy(size, type). The default value for type
is float64.
You will find below an example which defines the function assign taking two arrays as parameters, the second
one being an empty array which will be assigned the values of the first array.
import numpy as np
import starpu
from starpu import Handle
from starpu import HandleNumpy
starpu.init()
@starpu.access(b="W")
def assign(a,b):

for i in range(min(np.size(a,0), np.size(b,0))):
for j in range(min(np.size(a,1), np.size(b,1))):

b[i][j] = a[i][j]
return b

a = np.array([[1, 2, 3], [4, 5, 6]])
a_h = Handle(a)
e_h = HandleNumpy((5,10), a.dtype)
res = starpu.task_submit(ret_handle=True)(assign, a_h, e_h)
e_h.acquire()

array([[1, 2, 3, 0, 0, 0, 0, 0, 0, 0],
[4, 5, 6, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

e_h.release()

4.4.4 Array Partitioning

A n-dim numpy array can be split into several sub-arrays by calling the method Handle::partition(nchildren,
dim, chunks_list) (Refer to the C API starpu_data_partition_plan()).

• nchildren is the number of sub-handles,

• dim is the dimension that we want to partition along, it can be 0 for vertical dimension, 1 for horizontal
dimension, 2 for depth dimension, 3 for time dimension, ...etc.

• chunks_list is a list containing the size of each segment. The total length of segments in this list must
be equal to the length of the selected dimension.

Generated by Doxygen

4.4 StarPU Data Interface for Python Objects 21

The method will return a sub-handle list, each of the sub-handles can be used when submitting a task with task←↩

_submit(). This allows to process an array in parallel, once the execution of each sub-handle is finished, the
result will be directly reflected in the original n-dim array.
When the sub-handles are no longer needed, the method Handle::unpartition(handle_list,
nchildren) should be called to clear the partition and unregister all the sub-handles (Refer to the C API
starpu_data_partition_clean()).

• handle_list is the sub-handle list which was previously returned by the method Handle←↩

::partition(),

• nchildren is the number of sub-handles.

Here is an example to use these methods.
import numpy as np
import starpu
from starpu import Handle
starpu.init()
@starpu.access(a="RW", b="R")
def add(a,b):

np.add(a,b,out=a)
n, m = 20, 10
arr = np.arange(n*m).reshape(n, m)
arr_h = Handle(arr)
arr_h.acquire(mode=’RW’)

[[0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]
[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]
[60 61 62 63 64 65 66 67 68 69]
[70 71 72 73 74 75 76 77 78 79]
[80 81 82 83 84 85 86 87 88 89]
[90 91 92 93 94 95 96 97 98 99]
[100 101 102 103 104 105 106 107 108 109]
[110 111 112 113 114 115 116 117 118 119]
[120 121 122 123 124 125 126 127 128 129]
[130 131 132 133 134 135 136 137 138 139]
[140 141 142 143 144 145 146 147 148 149]
[150 151 152 153 154 155 156 157 158 159]
[160 161 162 163 164 165 166 167 168 169]
[170 171 172 173 174 175 176 177 178 179]
[180 181 182 183 184 185 186 187 188 189]
[190 191 192 193 194 195 196 197 198 199]]

arr_h.release()
split_num = 3
arr_h_list = arr_h.partition(split_num, 1, [3,2,5]) # split into 3 sub-handles, and partition along the

horizontal dimension
for i in range(split_num):

res=starpu.task_submit(ret_handle=True)(add, arr_h_list[i], arr_h_list[i])
arr_h.acquire(mode=’RW’)

[[0 2 4 12 16 40 48 56 64 72]
[80 88 96 104 112 120 128 136 144 152]
[160 168 176 184 192 200 208 216 224 232]
[240 248 256 264 272 280 288 296 304 312]
[320 328 336 172 176 180 184 188 192 196]
[200 204 208 212 216 220 224 228 232 236]
[120 122 124 126 128 130 132 134 136 138]
[140 142 144 146 148 150 152 154 156 158]
[160 162 164 166 168 170 172 174 176 178]
[180 182 184 186 188 190 192 194 196 198]
[200 202 204 206 208 105 106 107 108 109]
[110 111 112 113 114 115 116 117 118 119]
[120 121 122 123 124 125 126 127 128 129]
[130 131 132 133 134 135 136 137 138 139]
[140 141 142 143 144 145 146 147 148 149]
[150 151 152 153 154 155 156 157 158 159]
[160 161 162 163 164 165 166 167 168 169]
[170 171 172 173 174 175 176 177 178 179]
[180 181 182 183 184 185 186 187 188 189]
[190 191 192 193 194 195 196 197 198 199]]

Generated by Doxygen

22 Python Interface

arr_h.release()
arr_h.unpartition(arr_h_list, split_num)
arr_h.unregister()

The method Handle::get_partition_size(handle_list) can be used to get the array size of each
sub-array.
arr_h_list = arr_h.partition(split_num, 1, [3,2,5])
arr_h.get_partition_size(arr_h_list)

[60, 40, 100]

The full script is available in starpupy/examples/starpu_py_partition.py.

4.5 Benchmark

This benchmark gives a glimpse into how long a task should be (in µs) for the StarPU Python interface overhead to
be low enough to keep efficiency. Running starpupy/benchmark/tasks_size_overhead.sh generates
a plot of the speedup of tasks of various sizes, depending on the number of CPUs being used.
In the first figure, the return value is a handle object. In the second figure, the return value is a future object. In the
third figure, the return value is None.
For example, in the figure of returning handle object, for a 571 µs task (the green line), StarPU overhead is low
enough to guarantee a good speedup if the number of CPUs is not more than 12. But with the same number of
CPUs, a 314 µs task (the blue line) cannot have a correct speedup. We need to decrease the number of CPUs to
about 8 if we want to keep efficiency.

Generated by Doxygen

4.5 Benchmark 23

Generated by Doxygen

24 Python Interface

4.6 Running Python Functions as Pipeline Jobs (Imitating Joblib Library)

The StarPU Python interface also provides parallel computing for loops using multiprocessing, similarly to the
Joblib Library that can simply turn out Python code into parallel computing code and thus increase the
computing speed.

4.6.1 Examples

• The most basic usage is to parallelize a simple iteration.
from math import log10
[log10(10 ** i) for i in range(10)]

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

In order to spread it over several CPUs, you need to import the starpu.joblib module, and use its
Parallel class:
import starpu.joblib
from math import log10
starpu.init()
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(log10)(10**i)for i in range(10))

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

It is also possible to first create an object of the Parallel class, and then call starpu.joblib.←↩

delayed to execute the generator expression.
import starpu.joblib
from math import log10
starpu.init()
parallel=starpu.joblib.Parallel(n_jobs=2)
parallel(starpu.joblib.delayed(log10)(10**i)for i in range(10))

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

• Instead of a generator expression, a list of functions can also be submitted as a task through the Parallel
class.
import starpu.joblib
starpu.init()
#generate a list to store functions
g_func=[]
#function no input no output print hello world
def hello():

print ("Example 1: Hello, world!")
g_func.append(starpu.joblib.delayed(hello)())
#function has 2 int inputs and 1 int output
def multi(a, b):

res_multi = a*b
print("Example 2: The result of ",a,"*",b,"is",res_multi)
return res_multi

g_func.append(starpu.joblib.delayed(multi)(2, 3))
#function has 4 float inputs and 1 float output
def add(a, b, c, d):

res_add = a+b+c+d
print("Example 3: The result of ",a,"+",b,"+",c,"+",d,"is",res_add)
return res_add

g_func.append(starpu.joblib.delayed(add)(1.2, 2.5, 3.6, 4.9))
#function has 2 int inputs 1 float input and 1 float output 1 int output
def sub(a, b, c):

res_sub1 = a-b-c
res_sub2 = a-b
print ("Example 4: The result of ",a,"-",b,"-",c,"is",res_sub1,"and the result

of",a,"-",b,"is",res_sub2)
return res_sub1, res_sub2

g_func.append(starpu.joblib.delayed(sub)(6, 2, 5.9))
#input is iterable function list
starpu.joblib.Parallel(n_jobs=2)(g_func)

Execution:

Example 3: The result of 1.2 + 2.5 + 3.6 + 4.9 is 12.200000000000001
Example 1: Hello, world!
Example 4: The result of 6 - 2 - 5.9 is -1.9000000000000004 and the result of 6 - 2 is 4
Example 2: The result of 2 * 3 is 6
[None, 6, 12.200000000000001, (-1.9000000000000004, 4)]

• The function can also take array parameters.
import starpu.joblib
import numpy as np
starpu.init()

Generated by Doxygen

https://joblib.readthedocs.io/en/latest/index.html
https://joblib.readthedocs.io/en/latest/index.html

4.6 Running Python Functions as Pipeline Jobs (Imitating Joblib Library) 25

def multi_array(a, b):
for i in range(len(a)):

a[i] = a[i]*b[i]
A = np.arange(10)
B = np.arange(10, 20, 1)
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(multi_array)((i for i in A), (j for j in B)))
A

Here the array A has not been modified.

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

If we pass A directly as an argument, its value is updated
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(multi_array)(A, B))
A

array([0, 11, 24, 39, 56, 75, 96, 119, 144, 171])

In the next call, the value of A is also updated.
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(multi_array)(b=(j for j in B), a=A))
A

array([0, 121, 288, 507, 784, 1125, 1536, 2023, 2592, 3249])

The above three writing methods are equivalent and their execution time are very close. However, when using
directly a numpy arrays, its value will be updated, this does not happen when generators are provided. When
using a numpy array, it will be handled by StarPU with a data interface.

• Here an example mixing scalar objects and numpy arrays or generator expressions.
import starpu.joblib
import numpy as np
starpu.init()
def scal(a, t):

for i in range(len(t)):
t[i] = t[i]*a

A = np.arange(10)
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(scal)(2, (i for i in A)))
starpu.joblib.Parallel(n_jobs=2)(starpu.joblib.delayed(scal)(2,A))

Again, the value of A is modified by the 2nd call.
A

array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])

The full script is available in starpupy/examples/starpu_py_parallel.py.

4.6.2 Parallel Parameters

The starpu.joblib.Parallel class accepts the following parameters:

• mode (string, default: "normal")

A string with the value "normal" or "future". With the "normal" mode, you can call starpu.←↩

joblib.Parallel directly without using the asyncio module, and you will get the result when the task
is executed. With the "future" mode, when calling starpu.joblib.Parallel, you will get a Future
object as a return value. By setting the parameter end_msg, the given message will be displayed when the
result is ready, then you can call await to get the result. The asyncio module should be imported in this
case.
import starpu
import asyncio
from math import log10
starpu.init()
fut = starpu.joblib.Parallel(mode="future", n_jobs=3, end_msg="The result is
ready!")(starpu.joblib.delayed(log10)(10**i)for i in range(10))
The result is ready! <_GatheringFuture finished result=[[0.0, 1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0,
8.0, 9.0]]>
await fut

[[0.0, 1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]

• end_msg (string, default: None)

A message that will be displayed when the task is executed and the result is ready. When the parameter is
unset, no message will be displayed when the result is ready. In any case, you need to perform awaiting to
get the result.

Generated by Doxygen

26 Python Interface

• n_jobs (int, default: None)

The maximum number of concurrently running jobs. If -1 all CPUs are used. If 1 is given, no parallel computing
code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used.
Thus, for n_jobs = -2, all CPUs but one are used. None is a marker for ‘unset’ that will be interpreted
as n_jobs=1 (sequential execution). n_cpus is the number of CPUs detected by StarPU on the running
device.

• perfmodel (string, default : None)

Set the name of the performance model. This name will be used as the filename where the perfor-
mance model information will be saved. After the task is executed, one can call the function starpu.←↩

perfmodel_plot() by giving the symbol of perfmodel to view its performance curve.

4.6.3 Performances

• We compare the performances of the two methods for passing arguments to the starpu.joblib.delayed func-
tion. The first method defines a function that contains only scalars calculations, and then we pass a generator
expression as an argument. The second method defines a function that contains arrays calculations, and
then we pass either numpy arrays or generators as arguments. The second method takes less time.
import starpu.joblib
import numpy as np
import time
starpu.init()
N=1000000
def multi(a,b):

res_multi = a*b
return res_multi

print("--First method")
A = np.arange(N)
B = np.arange(N, 2*N, 1)
start_exec1 = time.time()
start_cpu1 = time.process_time()
starpu.joblib.Parallel(n_jobs=-1)(starpu.joblib.delayed(multi)(i,j) for i,j in zip(A,B))
end_exec1 = time.time()
end_cpu1 = time.process_time()
print("the program execution time is", end_exec1-start_exec1)
print("the cpu execution time is", end_cpu1-start_cpu1)
def multi_array(a, b):

for i in range(len(a)):
a[i] = a[i]*b[i]

return a
print("--Second method with Numpy arrays")
A = np.arange(N)
B = np.arange(N, 2*N, 1)
start_exec2 = time.time()
start_cpu2 = time.process_time()
starpu.joblib.Parallel(n_jobs=-1)(starpu.joblib.delayed(multi_array)(A, B))
end_exec2 = time.time()
end_cpu2 = time.process_time()
print("the program execution time is", end_exec2-start_exec2)
print("the cpu execution time is", end_cpu2-start_cpu2)
print("--Second method with generators")
A = np.arange(N)
B = np.arange(N, 2*N, 1)
start_exec3 = time.time()
start_cpu3 = time.process_time()
starpu.joblib.Parallel(n_jobs=-1)(starpu.joblib.delayed(multi_array)((i for i in A), (j for j in B)))
end_exec3 = time.time()
end_cpu3 = time.process_time()
print("the program execution time is", end_exec3-start_exec3)
print("the cpu execution time is", end_cpu3-start_cpu3)

Execution:

--First method
the program execution time is 3.000865936279297
the cpu execution time is 5.17138062
--Second method with Numpy arrays
the program execution time is 0.7571873664855957
the cpu execution time is 0.9166007309999991
--Second method with generators
the program execution time is 0.7259719371795654
the cpu execution time is 1.1182918959999988

• Performance can also be shown with the performance model. Here an example with the function log10.
from math import log10
for x in [10, 100, 1000, 10000, 100000, 1000000]:

Generated by Doxygen

4.6 Running Python Functions as Pipeline Jobs (Imitating Joblib Library) 27

for X in range(x, x*10, x):
starpu.joblib.Parallel(n_jobs=-1, perfmodel="log_list")(starpu.joblib.delayed(log10)(i+1)for i

in range(X))
starpu.perfmodel_plot(perfmodel="log_list")

If we use a numpy array as parameter, the calculation can withstand larger size, as shown below.
from math import log10
def log10_arr(t):

for i in range(len(t)):
t[i] = log10(t[i])

return t
for x in [10, 100, 1000, 10000, 100000, 1000000, 10000000]:

for X in range(x, x*10, x):
A = np.arange(1,X+1,1)
starpu.joblib.Parallel(n_jobs=-1, perfmodel="log_arr")(starpu.joblib.delayed(log10_arr)(A))

starpu.perfmodel_plot(perfmodel="log_arr")

Generated by Doxygen

28 Python Interface

4.7 Multiple Interpreters

It is possible to use multiple interpreters when running python applications. To do so, you need to set the variable
STARPUPY_MULTI_INTERPRETER when running a StarPU Python application.
Python interpreters share the Global Interpreter Lock (GIL), which requires that at any time, one and only one thread
has the right to execute a task. In other words, GIL makes the multiple interpreters execution of Python actually
serial rather than parallel, and the execution of Python program is single-threaded essentially. Therefore, if the
application is pure Python script, even with multi-interpreters, the program cannot be executed in parallel, unless an
external C application is called.
Fortunately now there is a quite positive development. Python developers are preparing to implement stop shar-
ing the GIL between interpreters (https://peps.nogil.dev/pep-0684/) or even make GIL optional so
that Python code can be run without GIL (https://peps.nogil.dev/pep-0701/), that will facilitate true
parallelism with the next Python version.
In order to transfer data between interpreters, the module cloudpickle is used to serialize Python objects in
contiguous byte array. This mechanism increases the overhead of the StarPU Python interface, as shown in the
following plots, to be compared to the plots given in Benchmark.
In the first figure, the return value is a handle object. In the second figure, the return value is a future object. In the
third figure, the return value is None.

Generated by Doxygen

https://peps.nogil.dev/pep-0684/
https://peps.nogil.dev/pep-0701/

4.7 Multiple Interpreters 29

Generated by Doxygen

30 Python Interface

In order to reflect this influence more intuitively, we make a performance comparison.
By default, StarPU uses virtually shared memory manager for Python objects supporting buffer protocol that allows
to minimize data transfers. But in the case of multi-interpreter, if we do not use virtually shared memory manager,
data transfer can be realized only with the help of cloudpickle.
We will show the operation performances below (Running test_handle_perf_pickle.sh). The operation
that we test is numpy addition (numpy.add), and the array size is 10, 20, ..., 100, 200, ..., 1000, 2000, ..., 10000,
2000, ..., 100000,200000, ..., 1000000, 2000000, ..., 10000000, ..., 50000000. We compared three cases: first,
using virtually shared memory manager, second, without using virtually shared memory manager, third, without
using StarPU task submitting, but directly calling numpy.add function.
In the first figure, we compare the submission time when using StarPU and the execution time without using Star←↩

PU. We can see that there is still an obvious optimization using StarPU virtually shared memory manager when
the test array size is large. However, if only using cloudpickle, StarPU Python interface cannot provide an effective
optimization. And in the second figure, we can see that the same operation will take more time to finish the program
execution when only using cloudpickle.

Generated by Doxygen

4.8 Master Slave Support 31

We can also define our own function to do the numpy operation, e.g. the element addition:
def add(a, b):

for i in range(np.size(a)):
a[i] = a[i] + b[i]

We will compare operation performances of the same three cases, but based on the custom function add(a, b).
We can see that the custom function takes more time than numpy function overall. Although the same operation
still takes more time to submit the task when only using cloudpickle than with virtually shared memory manager,
there is still a better optimization. The operation takes less time than only calling a custom function even when the
array is not very large.

4.8 Master Slave Support

StarPU Python interface provides MPI master slave support as well. Please refer to MPIMasterSlave for the specific
usage.
When you write your Python script, make sure to import all required functions before the starpumodule. Functions
imported after the starpu module can only be submitted using their name as a string when calling task_←↩

submit(), this will decrease the submission efficiency.
(TODO)

Generated by Doxygen

32 Python Interface

Generated by Doxygen

Chapter 5

The StarPU OpenMP Runtime Support (SORS)

StarPU provides the necessary routines and support to implement an OpenMP (http://www.openmp.←↩

org/) runtime compliant with the revision 3.1 of the language specification, and compliant with the task-related
data dependency functionalities introduced in the revision 4.0 of the language. This StarPU OpenMP Runtime
Support (SORS) has been designed to be targeted by OpenMP compilers such as the Klang-OMP compiler. Most
supported OpenMP directives can both be implemented inline or as outlined functions.
All functions are defined in OpenMP Runtime Support.
Several examples supporting OpenMP API are provided in StarPU's tests/openmp/ directory.

5.1 Implementation Details and Specificities

5.1.1 Main Thread

When using SORS, the main thread gets involved in executing OpenMP tasks just like every other threads, in order
to be compliant with the specification execution model. This contrasts with StarPU's usual execution model, where
the main thread submit tasks but does not take part in executing them.

5.1.2 Extended Task Semantics

The semantics of tasks generated by SORS are extended with respect to regular StarPU tasks in that SORS' tasks
may block and be preempted by SORS call, whereas regular StarPU tasks cannot. SORS tasks may coexist with
regular StarPU tasks. However, only the tasks created using SORS API functions inherit from extended semantics.

5.2 Configuration

SORS can be compiled into libstarpu through the configure option --enable-openmp. Conditional compiled
source codes may check for the availability of the OpenMP Runtime Support by testing whether the C preprocessor
macro STARPU_OPENMP is defined or not.

5.3 Initialization and Shutdown

SORS needs to be executed/terminated by the starpu_omp_init() / starpu_omp_shutdown() instead of starpu_init()
/ starpu_shutdown(). This requirement is necessary to make sure that the main thread gets the proper execution
environment to run OpenMP tasks. These calls will usually be performed by a compiler runtime. Thus, they can be
executed from a constructor/destructor such as this:
__attribute__((constructor))
static void omp_constructor(void)
{

int ret = starpu_omp_init();
STARPU_CHECK_RETURN_VALUE(ret, "starpu_omp_init");

}
__attribute__((destructor))
static void omp_destructor(void)
{

starpu_omp_shutdown();
}

Generated by Doxygen

http://www.openmp.org/
http://www.openmp.org/

34 The StarPU OpenMP Runtime Support (SORS)

Basic examples are available in the files tests/openmp/init_exit_01.c and tests/openmp/init←↩

_exit_02.c.

See also

starpu_omp_init()

starpu_omp_shutdown()

5.4 Parallel Regions and Worksharing

SORS provides functions to create OpenMP parallel regions, as well as mapping work on participating workers. The
current implementation does not provide nested active parallel regions: Parallel regions may be created recursively,
however only the first level parallel region may have more than one worker. From an internal point-of-view, SORS'
parallel regions are implemented as a set of implicit, extended semantics StarPU tasks, following the execution
model of the OpenMP specification. Thus, SORS' parallel region tasks may block and be preempted, by SORS
calls, enabling constructs such as barriers.

5.4.1 Parallel Regions

Parallel regions can be created with the function starpu_omp_parallel_region() which accepts a set of attributes
as parameter. The execution of the calling task is suspended until the parallel region completes. The field
starpu_omp_parallel_region_attr::cl is a regular StarPU codelet. However, only CPU codelets are supported for
parallel regions. Here is an example of use:
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
pthread_t tid = pthread_self();
int worker_id = starpu_worker_get_id();
printf("[tid %p] task thread = %d\n", (void *)tid, worker_id);

}
void f(void)
{

struct starpu_omp_parallel_region_attr attr;
memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = parallel_region_f;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
starpu_omp_parallel_region(&attr);
return 0;

}

A basic example is available in the file tests/openmp/parallel_01.c.

See also

struct starpu_omp_parallel_region_attr

starpu_omp_parallel_region()

5.4.2 Parallel For

OpenMP for loops are provided by the starpu_omp_for() group of functions. Variants are available for inline or
outlined implementations. SORS supports static, dynamic, and guided loop scheduling clauses. The auto
scheduling clause is implemented as static. The runtime scheduling clause honors the scheduling mode
selected through the environment variable OMP_SCHEDULE or the starpu_omp_set_schedule() function. For loops
with the ordered clause are also supported. An implicit barrier can be enforced or skipped at the end of the
worksharing construct, according to the value of the nowait parameter.
The canonical family of starpu_omp_for() functions provide each instance with the first iteration number and the
number of iterations (possibly zero) to perform. The alternate family of starpu_omp_for_alt() functions provide each
instance with the (possibly empty) range of iterations to perform, including the first and excluding the last. An
example is available in the file tests/openmp/parallel_for_01.c.
The family of starpu_omp_ordered() functions enable to implement OpenMP's ordered construct, a region with a
parallel for loop that is guaranteed to be executed in the sequential order of the loop iterations. An example is
available in the file tests/openmp/parallel_for_ordered_01.c.
void for_g(unsigned long long i, unsigned long long nb_i, void *arg)
{

(void) arg;

Generated by Doxygen

5.4 Parallel Regions and Worksharing 35

for (; nb_i > 0; i++, nb_i--)
{

array[i] = 1;
}

}
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
starpu_omp_for(for_g, NULL, NB_ITERS, CHUNK, starpu_omp_sched_static, 0, 0);

}

See also

starpu_omp_for()

starpu_omp_for_inline_first()

starpu_omp_for_inline_next()

starpu_omp_for_alt()

starpu_omp_for_inline_first_alt()

starpu_omp_for_inline_next_alt()

starpu_omp_ordered()

starpu_omp_ordered_inline_begin()

starpu_omp_ordered_inline_end()

5.4.3 Sections

OpenMP sections worksharing constructs are supported using the set of starpu_omp_sections() variants. The
general principle is either to provide an array of per-section functions or a single function that will redirect the
execution to the suitable per-section functions. An implicit barrier can be enforced or skipped at the end of the
worksharing construct, according to the value of the nowait parameter.
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
section_funcs[0] = f;
section_funcs[1] = g;
section_funcs[2] = h;
section_funcs[3] = i;
section_args[0] = arg_f;
section_args[1] = arg_g;
section_args[2] = arg_h;
section_args[3] = arg_i;
starpu_omp_sections(4, section_f, section_args, 0);

}

An example is available in the file tests/openmp/parallel_sections_01.c.

See also

starpu_omp_sections()

starpu_omp_sections_combined()

5.4.4 Single

OpenMP single workharing constructs are supported using the set of starpu_omp_single() variants. An implicit
barrier can be enforced or skipped at the end of the worksharing construct, according to the value of the nowait
parameter. An example is available in the file tests/openmp/parallel_single_nowait_01.c.
void single_f(void *arg)
{

(void) arg;
pthread_t tid = pthread_self();
int worker_id = starpu_worker_get_id();
printf("[tid %p] task thread = %d -- single\n", (void *)tid, worker_id);

}
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
starpu_omp_single(single_f, NULL, 0);

}

Generated by Doxygen

36 The StarPU OpenMP Runtime Support (SORS)

SORS also provides dedicated support for single sections with copyprivate clauses through the
starpu_omp_single_copyprivate() function variants. The OpenMP master directive is supported as well, using
the starpu_omp_master() function variants. An example is available in the file tests/openmp/parallel_←↩

single_copyprivate_01.c.

See also

starpu_omp_master()

starpu_omp_master_inline()

starpu_omp_single()

starpu_omp_single_inline()

starpu_omp_single_copyprivate()

starpu_omp_single_copyprivate_inline_begin()

starpu_omp_single_copyprivate_inline_end()

5.5 Tasks

SORS implements the necessary support of OpenMP 3.1 and OpenMP 4.0's so-called explicit tasks, together with
OpenMP 4.0's data dependency management.

5.5.1 Explicit Tasks

Explicit OpenMP tasks are created with SORS using the starpu_omp_task_region() function. The implementation
supports if, final, untied and mergeable clauses as defined in the OpenMP specification. Unless specified
otherwise by the appropriate clause(s), the created task may be executed by any participating worker of the current
parallel region.
The current SORS implementation requires explicit tasks to be created within the context of an active parallel region.
In particular, an explicit task cannot be created by the main thread outside a parallel region. Explicit OpenMP tasks
created using starpu_omp_task_region() are implemented as StarPU tasks with extended semantics, and may as
such be blocked and preempted by SORS routines.
The current SORS implementation supports recursive explicit tasks creation, to ensure compliance with the Open←↩

MP specification. However, it should be noted that StarPU is not designed nor optimized for efficiently scheduling
of recursive task applications.
The code below shows how to create 4 explicit tasks within a parallel region.
void task_region_g(void *buffers[], void *args)
{

(void) buffers;
(void) args;
pthread tid = pthread_self();
int worker_id = starpu_worker_get_id();
printf("[tid %p] task thread = %d: explicit task \"g\"\n", (void *)tid, worker_id);

}
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
struct starpu_omp_task_region_attr attr;
memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = task_region_g;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
attr.final_clause = 0;
attr.untied_clause = 1;
attr.mergeable_clause = 0;
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);

}

An example is available in the file tests/openmp/parallel_01.c.

See also

struct starpu_omp_task_region_attr

starpu_omp_task_region()

Generated by Doxygen

5.5 Tasks 37

5.5.2 Data Dependencies

SORS implements inter-tasks data dependencies as specified in OpenMP 4.0. Data dependencies are
expressed using regular StarPU data handles (starpu_data_handle_t) plugged into the task's attr.cl
codelet. The family of starpu_vector_data_register() -like functions, the starpu_omp_handle_register() and
starpu_omp_handle_unregister() functions, and the starpu_omp_data_lookup() function may be used to regis-
ter a memory area and to retrieve the current data handle associated with a pointer respectively. The testcase
./tests/openmp/task_02.c gives a detailed example of using OpenMP 4.0 tasks dependencies with
SORS implementation.
Note: the OpenMP 4.0 specification only supports data dependencies between sibling tasks, that are tasks created
by the same implicit or explicit parent task. The current SORS implementation also only supports data dependencies
between sibling tasks. Consequently, the behavior is unspecified if dependencies are expressed between tasks that
have not been created by the same parent task.

5.5.3 TaskWait and TaskGroup

SORS implements both the taskwait and taskgroup OpenMP task synchronization constructs specified in
OpenMP 4.0, with the starpu_omp_taskwait() and starpu_omp_taskgroup() functions, respectively.
An example of starpu_omp_taskwait() use, creating two explicit tasks and waiting for their completion:
void task_region_g(void *buffers[], void *args)
{

(void) buffers;
(void) args;
printf("Hello, World!\n");

}
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
struct starpu_omp_task_region_attr attr;
memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = task_region_g;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
attr.final_clause = 0;
attr.untied_clause = 1;
attr.mergeable_clause = 0;
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);
starpu_omp_taskwait();

An example is available in the file tests/openmp/taskwait_01.c.
An example of starpu_omp_taskgroup() use, creating a task group of two explicit tasks:
void task_region_g(void *buffers[], void *args)
{

(void) buffers;
(void) args;
printf("Hello, World!\n");

}
void taskgroup_f(void *arg)
{

(void)arg;
struct starpu_omp_task_region_attr attr;
memset(&attr, 0, sizeof(attr));
attr.cl.cpu_funcs[0] = task_region_g;
attr.cl.where = STARPU_CPU;
attr.if_clause = 1;
attr.final_clause = 0;
attr.untied_clause = 1;
attr.mergeable_clause = 0;
starpu_omp_task_region(&attr);
starpu_omp_task_region(&attr);

}
void parallel_region_f(void *buffers[], void *args)
{

(void) buffers;
(void) args;
starpu_omp_taskgroup(taskgroup_f, (void *)NULL);

}

An example is available in the file tests/openmp/taskgroup_01.c.

See also

starpu_omp_task_region()

starpu_omp_taskwait()

starpu_omp_taskgroup()

Generated by Doxygen

38 The StarPU OpenMP Runtime Support (SORS)

starpu_omp_taskgroup_inline_begin()

starpu_omp_taskgroup_inline_end()

5.6 Synchronization Support

SORS implements objects and method to build common OpenMP synchronization constructs.

5.6.1 Simple Locks

SORS Simple Locks are opaque starpu_omp_lock_t objects enabling multiple tasks to synchronize with each oth-
ers, following the Simple Lock constructs defined by the OpenMP specification. In accordance with such spec-
ification, simple locks may not be acquired multiple times by the same task, without being released in-between;
otherwise, deadlocks may result. Codes requiring the possibility to lock multiple times recursively should use
Nestable Locks (NestableLock). Codes NOT requiring the possibility to lock multiple times recursively should use
Simple Locks as they incur less processing overhead than Nestable Locks. An example is available in the file
tests/openmp/parallel_simple_lock_01.c.

See also

starpu_omp_lock_t

starpu_omp_init_lock()

starpu_omp_destroy_lock()

starpu_omp_set_lock()

starpu_omp_unset_lock()

starpu_omp_test_lock()

5.6.2 Nestable Locks

SORS Nestable Locks are opaque starpu_omp_nest_lock_t objects enabling multiple tasks to synchronize with
each others, following the Nestable Lock constructs defined by the OpenMP specification. In accordance with
such specification, nestable locks may be acquired multiple times recursively by the same task without dead-
locking. Nested locking and unlocking operations must be well parenthesized at any time, otherwise deadlock
and/or undefined behavior may occur. Codes requiring the possibility to lock multiple times recursively should use
Nestable Locks. Codes NOT requiring the possibility to lock multiple times recursively should use Simple Locks
(SimpleLock) instead, as they incur less processing overhead than Nestable Locks. An example is available in the
file tests/openmp/parallel_nested_lock_01.c.

See also

starpu_omp_nest_lock_t

starpu_omp_init_nest_lock()

starpu_omp_destroy_nest_lock()

starpu_omp_set_nest_lock()

starpu_omp_unset_nest_lock()

starpu_omp_test_nest_lock()

5.6.3 Critical Sections

SORS implements support for OpenMP critical sections through the family of starpu_omp_critical functions.
Critical sections may optionally be named. There is a single, common anonymous critical section. Mu-
tual exclusion only occur within the scope of single critical section, either a named one or the anonymous
one. Corresponding examples are available in the files tests/openmp/parallel_critical_01.c and
tests/openmp/parallel_critical_inline_01.c.

Generated by Doxygen

5.7 Example: An OpenMP LLVM Support 39

See also

starpu_omp_critical()

starpu_omp_critical_inline_begin()

starpu_omp_critical_inline_end()

5.6.4 Barriers

SORS provides the starpu_omp_barrier() function to implement barriers over parallel region teams. In accordance
with the OpenMP specification, the starpu_omp_barrier() function waits for every implicit task of the parallel region
to reach the barrier and every explicit task launched by the parallel region to complete, before returning. An example
is available in the file tests/openmp/parallel_barrier_01.c.

See also

starpu_omp_barrier()

5.7 Example: An OpenMP LLVM Support

SORS has been used to implement an OpenMP LLVM Support. This allows to seamlessly run OpenMP applications
on top of StarPU.
To enable this support, one just needs to call configure with the option --enable-openmp-llvm.
After installation, the directory lib/starpu/examples/starpu_openmp_llvm contains a OpenMP appli-
cation, its source code and the executable compiled with the StarPU OpenMP LLVM support, as well as a README
file explaining how to use the support for your own application.
One just needs to compile an OpenMP application with clang and to execute it the StarPU OpenMP LLVM support
library file instead of the default libomp.so.

5.8 OpenMP Standard Functions in StarPU

StarPU provides severals functions which are very similar to their OpenMP counterparts but are adapted to the
StarPU runtime system. These functions are:

• starpu_omp_set_num_threads()

• starpu_omp_get_num_threads()

• starpu_omp_get_thread_num()

• starpu_omp_get_max_threads()

• starpu_omp_get_num_procs() which is used to get the number of available StarPU CPU workers.

• starpu_omp_in_parallel()

• starpu_omp_set_dynamic()

• starpu_omp_get_dynamic()

• starpu_omp_set_nested()

• starpu_omp_get_nested()

• starpu_omp_get_cancellation()

• starpu_omp_set_schedule()

• starpu_omp_get_schedule()

• starpu_omp_get_thread_limit()

• starpu_omp_set_max_active_levels()

Generated by Doxygen

40 The StarPU OpenMP Runtime Support (SORS)

• starpu_omp_get_max_active_levels()

• starpu_omp_get_level()

• starpu_omp_get_ancestor_thread_num()

• starpu_omp_get_team_size()

• starpu_omp_get_active_level()

• starpu_omp_in_final()

• starpu_omp_get_proc_bind()

• starpu_omp_get_num_places()

• starpu_omp_get_place_num_procs()

• starpu_omp_get_place_proc_ids()

• starpu_omp_get_place_num()

• starpu_omp_get_partition_num_places()

• starpu_omp_get_partition_place_nums()

• starpu_omp_set_default_device()

• starpu_omp_get_default_device()

• starpu_omp_get_num_devices()

• starpu_omp_get_num_teams()

• starpu_omp_get_team_num()

• starpu_omp_is_initial_device()

• starpu_omp_get_initial_device()

• starpu_omp_get_max_task_priority()

• starpu_omp_get_wtime()

• starpu_omp_get_wtick()

Generated by Doxygen

Part I

Appendix

Generated by Doxygen

Chapter 6

The GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright

2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document free in
the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of `‘copyleft’', which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
`‘Document’', below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as `‘you’'. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A `‘Modified Version’' of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A `‘Secondary Section’' is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The `‘Invariant Sections’' are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

Generated by Doxygen

http://fsf.org/

44 The GNU Free Documentation License

The `‘Cover Texts’' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A `‘Transparent’' copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not Transparent'' is calledOpaque''.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG,
XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The `‘Title Page’' means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, `‘Title Page’' means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

The `‘publisher’' means any person or entity that distributes copies of the Document to the public.

A section `‘Entitled XYZ’' means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as Acknowledgements'', Dedications'',
Endorsements'', orHistory''.) To `‘Preserve the Title’' of such a section when you modify the Docu-
ment means that it remains a section `‘Entitled XYZ’' according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, num-
bering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include
a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a

Generated by Doxygen

45

computer-network location from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

(a) Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document).
You may use the same title as a previous version if the original publisher of that version gives permission.

(b) List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this requirement.

(c) State on the Title page the name of the publisher of the Modified Version, as the publisher.

(d) Preserve all the copyright notices of the Document.

(e) Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

(f) Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

(g) Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

(h) Include an unaltered copy of this License.

(i) Preserve the section Entitled `‘History’', Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled `‘History’' in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

(j) Preserve the network location, if any, given in the Document for public access to a Transparent copy of
the Document, and likewise the network locations given in the Document for previous versions it was
based on. These may be placed in the `‘History’' section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

(k) For any section Entitled Acknowledgements'' orDedications'', Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

(l) Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

(m) Delete any section Entitled `‘Endorsements’'. Such a section may not be included in the Modified Ver-
sion.

(n) Do not retitle any existing section to be Entitled `‘Endorsements’' or to conflict in title with any Invariant
Section.

(o) Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

Generated by Doxygen

46 The GNU Free Documentation License

You may add a section Entitled `‘Endorsements’', provided it contains nothing but endorsements of your Mod-
ified Version by various parties—for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-←↩

Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity.
If the Document already includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled `‘History’' in the various original doc-
uments, forming one section Entitled History''; likewise combine any sections
EntitledAcknowledgements'', and any sections Entitled Dedications''. You must delete
all sections EntitledEndorsements.''

7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an `‘aggregate’' if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled Acknowledgements'', Dedications'', or `‘History’', the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

Generated by Doxygen

6.1 ADDENDUM: How to use this License for your documents 47

10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior
to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently rein-
stated, receipt of a copy of some or all of the same material does not give you any rights to use it.

11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a partic-
ular numbered version of this License `‘or any later version’' applies to it, you have the option of following the
terms and conditions either of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Docu-
ment specifies that a proxy can decide which future versions of this License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to choose that version for the Document.

12. RELICENSING

Massive Multiauthor Collaboration Site'' (orMMC Site'') means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an example of such a server. A Massive Multiauthor
Collaboration'' (orMMC'') contained in the site means any set of copyrightable works thus pub-
lished on the MMC site.

`‘CC-BY-SA’' means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Com-
mons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California,
as well as future copyleft versions of that license published by that same organization.

`‘Incorporate’' means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is `‘eligible for relicensing’' if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into
the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1,
2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site
at any time before August 1, 2009, provided the MMC is eligible for relicensing.

6.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (C) year your name. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled `‘GNU Free Documentation License’'.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the `‘with...Texts.’' line with this:

Generated by Doxygen

http://www.gnu.org/copyleft/

48 The GNU Free Documentation License

with the Invariant Sections being list their titles, with the Front-Cover Texts being list, and with the
Back-Cover Texts being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alter-
natives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

Generated by Doxygen

	1 Organization
	2 Native Fortran Support
	2.1 Implementation Details and Specificities
	2.1.1 Prerequisites
	2.1.2 Configuration
	2.1.3 Examples
	2.1.4 Compiling a Native Fortran Application

	2.2 Fortran Translation for Common StarPU API Idioms
	2.3 Uses, Initialization and Shutdown
	2.4 Fortran Flavor of StarPU's Variadic Insert_task
	2.5 Functions and Subroutines Expecting Data Structures Arguments
	2.6 Additional Notes about the Native Fortran Support
	2.6.1 Using StarPU with Older Fortran Compilers
	2.6.2 Valid API Mixes and Language Mixes

	3 StarPU Java Interface
	4 Python Interface
	4.1 Installation of the Python Interface
	4.2 Python Parallelism
	4.3 Using StarPU in Python
	4.3.1 Submitting Tasks
	4.3.2 Returning Future Object
	4.3.3 Submit Python Objects Supporting The Buffer Protocol

	4.4 StarPU Data Interface for Python Objects
	4.4.1 Interface for Ordinary Python Objects
	4.4.2 Interface for Python Objects Supporting Buffer Protocol
	4.4.3 Interface for Empty Numpy Array
	4.4.4 Array Partitioning

	4.5 Benchmark
	4.6 Running Python Functions as Pipeline Jobs (Imitating Joblib Library)
	4.6.1 Examples
	4.6.2 Parallel Parameters
	4.6.3 Performances

	4.7 Multiple Interpreters
	4.8 Master Slave Support

	5 The StarPU OpenMP Runtime Support (SORS)
	5.1 Implementation Details and Specificities
	5.1.1 Main Thread
	5.1.2 Extended Task Semantics

	5.2 Configuration
	5.3 Initialization and Shutdown
	5.4 Parallel Regions and Worksharing
	5.4.1 Parallel Regions
	5.4.2 Parallel For
	5.4.3 Sections
	5.4.4 Single

	5.5 Tasks
	5.5.1 Explicit Tasks
	5.5.2 Data Dependencies
	5.5.3 TaskWait and TaskGroup

	5.6 Synchronization Support
	5.6.1 Simple Locks
	5.6.2 Nestable Locks
	5.6.3 Critical Sections
	5.6.4 Barriers

	5.7 Example: An OpenMP LLVM Support
	5.8 OpenMP Standard Functions in StarPU

	I Appendix
	6 The GNU Free Documentation License
	6.1 ADDENDUM: How to use this License for your documents

